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ABSTRACT

Smith, Bradley Warren. Ph.D., Purdue University, May 1985. ON THE
3 DESIGN AND MODELING OF SPECIAL PURPOSE PARALLEL
PROCESSING SYSTEMS. Major Professor: Howard Jay Siegel.

S
As the capabilities of computing machinery grow, so does the diverse

§ variety of their applications. The feasibility of many approaches to these
applications depends solely upon the existence of computing machinery capable
of performing these tasks within a given time constraint. Because the majority

of the available computing machinery is general purpose in nature, tasks that

do not require general purpose facilities, but that do require high throughput,

are condemned to execution on expensive general purpose hardware.

This research describes several tasks that require fast computing
machinery. These tasks do not require general purpose facilities in the sense
that the computing machinery used will only perform a fixed set of tasks.
Some of the tasks are simple in nature, but are required to execute on very
large data sets. Other tasks are computationally intensive in addition to
possibly involving large data sets. Both simple and complex algorithms are

considered. The discussion includes a description of the tasks.

All of the above tasks are useful; however, their value is determined in
part by the time required to perform them. This work discusses three

architectures for performing remote sensing tasks. These architectures can
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execute the described tasks more quickly than conventionally available

hardware. <. .

\\
The discussion extends to the realm of designing macro-pipelined

distributed computer systems for special purpose applications. Nine
parameters are introduced along with a proposal for an algorithmic approach to
designing a computer system for a special application. The parameters are

then applied to an isolated word recognition system.

For may tasks (especially those involving feedback), it is undesirable to
use synchronous parallelism. A study, including a probabilistic model, of the
effects of using asynchronous stages in the macro-pipeline is presented.

Simulation is used to verify the results.
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CHAPTER 1
INTRODUCTION

1.1 Overview

For many applications, response time and throughput are of critical
importance. Such applications include: defense against incoming missiles,
missile guidance, air traffic control, weather analysis, speech recognition, and
tomography. The principal goal is to process the data in ‘‘relevant” time
within some cost criteria. Further, the feasibility of performing many tasks
depends on the capability to execute them in a certain amount of time without

excessive hardware expense.

General purpose hardware, while less expensive than special purpose
hardware, is typically slower than hardware designed for a specific task. The
design of special computing facilities can take large amounts of time and
manpower, increasing the design overhead of such a system over a general
purpose system. Since special purpose computer systems typically do not sell
in large quantities, the design cost must be distributed over a relatively small
number of units. Thus, the cost of special purpose computer systems can be
considerably greater than that of general purpose computer systems. The high
cost of special purpose hardware decreases the desirability of algorithms that
require special purpose computer systems. Thus, accurate and powerful

algorithms may not be used in lieu of less accurate algorithms or, even worse,
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_.:' nothing at all. To help reduce the cost of special purpose systems, computer
X aided tools can be used to minimize the human intervention needed in the
}‘ computer design process. These tools would reduce the design time. To
> achieve this goal, tasks must be modeled as to the type of computational 2
2 resources they require. Further, presently available hardware, such as small ':
boards and chips, must be modeled according to their computational
capabilities. By extending the models to parallel schemes, combination of the i«‘
two models allows systems to be proposed or built to perform computationally “
. intensive tasks within some time, cost, or other constraint. 1
; This research is divided into four chapters. Chapter 2 considers the
application of parallelism to contextual classifiers for image analysis which are
being developed to exploit the spatial/spectral content of a picture element
= (pixel) to achieve higher classification accuracy. Contextual classification
requires large amounts of computation, so special hardware is of value.
Chapter 2 explores the CDC Flexible Processor (FP) system
; ({CDC77a],[CDC77b]) and the proposed multimicroprocessor system PASM
& [SiS&1], which are both parallel processing systems that can be applied to image
processing tasks. Timings for the FP system to perform contextual

classifications, based on a Purdue developed FP system simulator, are

presented. For comparison, the same algorithms have been run on a PDP-

11/70. The applicability of PASM for implementing the contextual classifier is

’
5.

demonstrated by algorithm complexity analysis. The reduction in execution

R RO AR AR AR
P S A a AR JO
. A .
P s . e Vi L Y.
. . ' ’
S ' e S LA
: ‘e "e i hd

' et :1
- achieved through the use of these parallel systems is shown. -;:*-:'.-‘:
- NSRS
- AR
! The research in Chapter 2 has suggested a specific architecture for the _’i
- ,

application of parallel processing to remote sensing tasks. Chapter 3 proposes

2.

ay

- such an architecture. It is a large-scale multimicroprocessor structure which
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could conmsist of as many as 1024 processors. This type of architecture is PaTads

extremely well suited to the execution of window and pixel based operations.

.

-
. . . . . A
A number of remote sensing data processing techniques for implementation on AR
o~
DR
. . . : . . . ot
a machine with this architecture are discussed. Algorithms considered are: ol
o,
h)

image smoothing, image correlation, and contextual and non-contextual
methods of image analysis. This includes both the design of parallel algorithms

and the exploitation of appropriate data structures.

In addition to demonstrating how various algorithms can be performed on
the parallel architecture, Chapter 3 proposes extensions to the architecture to
increase its fault tolerance. Then, a specific implementation of the
architecture. called MuRSS, is contrasted to an already existing system called
MPP. MuRSS and MPP are compared with respect to speed, processing

capabilities, and fault tolerance.

In Chapter 4, an approach to modeling distributed macro-pipelined oo

e
AU I A

computer systems is examined. This chapter uses nine parameters to form a

NI I

y 1

model of the characteristics of parallel/distributed algorithms and the o

- v

environment in which they must execute. These parameters describe the 1/O
environment. the algorithm, the memory requirements of the algorithm, and }.-:"

the type and amount of arithmetic calculations required by the algorithm to

::Z process a normal data set.
\ In addition, Chapter 4 uses tuples to model the characteristies of computer :‘?_i:_-:-'
architectures. These tuples describe the instruction set. the instruction

processing times, the size and speed of on-board cache, the data and address

widths, the replication of units, the number of stages in pipelined units, and

the functional overlap for each unit in the architecture. By combining the

tuples with the nine parameters, the execution time of the algorithm modeled
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by the parameters on the hardware modeled by the tuples can be estimated.
The combination of these two models could be used as a basis for computer
aided design tools used for special purpose parallel/distributed processors. This
chapter uses a layered method of architecture design, in which a task is broken
down into sub-tasks. Each sub-task is then assigned to a special purpose
processing unit. Such a unit may be either a traditional serial type design or a

parallel design.

Chapter 5 extends the work done in Chapter 4 by looking at the effects of
both synchronous and asynchronous stages in macro-pipelined machines. Two
synchronous schemes (double buffering and triple buffering) are compared to an
asynchronous system with respect to throughput and system response time.
Theoretical results are presented. A simulator to calculate the throughput and
system response time of each system has been developed to verify the theory.

The results of the simulation of over 200,000 data sets are presented.

1.2. A Survey of Parallel Architectures for Image Processing

The purpose of remainder of this chapter is to give background
information pertinent to the rest of this work. Two taxonomies or hardware
description schemes are discussed in Section 1.3. Sections 1.4 and 1.5 describe
a number of proposed and implemented parallel and/or distributed processing
systems that can be used for image processing. The systems discussed in this
chapter are: CLIP4 - the Cellular Logic Image Processor [Duf82, DuW73,
Fou81l, Ger83|; Cytocomputer - a pipelined image processor [PrD79, Ste80;
DAP - the Distributed Array Processor [Ger83, Hun81, Red79]; the FP array
- CDC’s Flexible Processor array [All82, SiSR0, SiS82c. SmS&1, SwS80]; MPP -
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the Massively Parallel Processor [Bat80, Bat82, Ger83, Pot82a]; PASM - the
PArtitionable SIMD/MIMD system [SiM81a, SiS81, SiS82¢, Siesl|; PICAP -
the PICture Array Processor [KrD82, KrG82, Gud8l]; and STARAN -
Goodyear Aerospace’s associative processor system (Bat74, Bat76, Bat77h,

Bat82, FeF74, Ger83, Thu76, Pot82b].

1.3. Hardware Taxonomies

Currently, there are two classes of computer hardware taxonomies. There
are hardware taxonomies that classify (e.g., tiger) and those that describe (e.g..
four paws, 16 sharp claws, ravenous meat liking appetite, etc.). The
classiﬁcati(;n taxonomies provide only the most general information, omitting
details for ease of use. Several descriptive taxonomies have been developed to
accurately describe the architecture of computer hardware. These descriptive
taxonomies are often so cumbersome that they cannot be used verbally to

convey their thought.

One of the first taxonomies, proposed in [Fly66], is a classification
taxonomy. This taxonomy classifies a system based on the number of
concurrent instruction and data streams. A machine has either a single stream

or multiple streams in this taxonomy.

A machine that executes a Single Instruction stream on a Single Data
stream is called an SISD machine. Some examples of SISD machines are the
IBM 370/155, the DEC PDP-11/70, and the DEC VAX-11/780. Machines that
execute a Single Instruction stream on Multiple Data streams are called SIMD
machines. Some examples of SIMD machines are CLIP4, ILLIAC IV [Bar68,
Bou72, Sto&0], MPP, PASM (in SIMD mode), PICAP I, and STARAN. In such

............
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systems, a control unit broadcasts the same instruction to all processors, and
all enabled processors execute the same instruction simultaneously, each
processor on its own data stream. Machines that execute Multiple Instruction
streams on Muitiple Data streams are called MIMD machines. Some
examples of MIMD machines include the CDC Flexible Processor Array, PASM
(in MIMD- mode), PICAP M, and Cytocomputer [LoM80]. A machine that
executes a Multiple Instruction on a Single Data stream is called an MISD
machine. Macro-pipelined machines fall into this category. The design of such

machines is the topic of discussion for Chapter 4.

The classes of machines in this taxonomy are very broad. For example,
MPP, whose Processing Elements (PEs) operate on one bit of data at a time
falls into the same class (SIMD) as [ILLIAC IV, whose PEs operate on 64 bits of
data simultaneously. In addition, this taxonomy gives no indication of the
relative size of a machine. For example, PASM (in MIMD mode), which could
consist of up to 1024 PEs, is in the same class as the CDC FP array, which can
consist of up to 16 PEs. Several taxonomies have been proposed to narrow the
classes. at the expense of simplicity. Flynn's taxonomy, however, still remains

the simplest and most widely used.

In contrast to Flynn's taxonomy, which categorizes computers according
to their instruction and data streams, the classification taxonomy in [Kuc7g]
proposes to classify hardware according to the instruction stream(s), instruction
type. execution stream(s), and execution type. As in Flynn's taxonomy, the
instruction and execution streams can be either single or multiple. The

instruction and execution types can be either scalar or array.

The number of instruction streams is determined by the number of

concurrently executable programs. For a program to be executable, it requires




a program location counter to point to the next instruction to be executed.

If the arguments to any machine language instruction (operands) are
arrays, the instruction type is array. If no machine language instruction can
accept an array (vector) as an argument, the instruction type is scalar. For
example, consider the instruction:

move a,m

If “a" is a single element and ““m’ is a memory location this instruction type is
scalar. Systems that have scalar type instructions include: the AMD 9511A
(Amd82], the CDC FP array [CDC77a, All82], the CDC 6600 [Che80], CLIP4
[Duf82, Fou8l], ILLIAC IV [Bar68, Bou72], MPP [Bat80], PASM [SiS81, Sie82],
and STARAN [Bat76, Bat77b]. For the instruction:

move a,m,1000

"

if ““a” is the base address of an array, “m’’ is a memory location, and 1000 is
the number of bytes to be moved, then the instruction is implicitly performing
an array operation. For this latter case, the instruction type is array. For a
system to have array type instructions, it must include at least one array
instruction. Systems that have array type instructions are: OMEN [Thu76],

VAMP [Che80, Thu76), and the TI-ASC [Che80]. An example of a chip that

has an array type instruction is the Zilog-Z80 [SiS83).

The number of execution streams is determined by the variety of
operations that can be performed simultaneously by the system. Either a
system can perform a single operation or multiple operations at once. Multiple
copies of a single operation count as a single operation. Systems that fall into

the single execution stream category are all systems in the SISD and SIMD
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classes of Flynn's taxonomy that allow no overlapping of different instructions
(e.g., no overlap of control unit and PE operations). An example of a machine
that has a single instruction stream of scalars with a multiple execution stream v

is the CDC 6600. The CDC 6600 has two multipliers, the execution of which :

SV Y Y SR ..
o

can be overlapped with the addition unit. From a single job stream, both an Jis
addition and multiplication can be taking place at the same time, although
they cannot be initiated simultaneously, thus, there exists multiple execution

streams. Another example of a machine that has a single instruction stream of

scalars with a multiple execution stream is the VAX 11/780 with the floating
point accelerator. A VAX 11/780 can overlap slower floating point operations '
i with integer instructions, giving multiple executions simultaneously. Without

the floating point accelerator, the VAX cannot overlap operations in any way, -

thus the system must wait for the result of any operation before continuing.

T AEEEAAR T

Thus, the VAX without the floating point processor is an example of a system

that has a single instruction and single execution stream.

The execution type is either scalar or array and is determined by the

number of operands to which a machine language instruction can be applied

- v r MR N
CRRFRORAR  CRC A
’

v’

x simultaneously. A system where a single machine language instruction operates

on multiple operands, like the ILLIAC IV SIMD machine, which issues scalar

instructions that act upon 64 operands, is said to have an array execution type.

If no machine language instruction can act on multiple operands

:é simultaneously, the execution type is scalar. oG
'gr,: The nomenclature is formed by describing the instruction stream and type ’\
.F with the execution stream and type. Systems such as the PDP-11/70, which ,‘::\:
have a Single Instruction stream that performs Scalar instructions on a Single "'r—
Execution stream of Scalars are classified as: SISSES. ILLIAC IV, which has

)
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scalar type instructions fetched by one control unit and broadcast to 64
execution units, is classified as: SISSEA (assuming no instructional overlap is
allowed). The CDC 6600 has a single instruction stream of scalar instructions
that control a multiple execution stream of scalars and is classified as
SISMES. The TI-ASC has a single instruction stream of array instructions
that controls a multiple execution stream of array operations is classified as
SIAMEA. Table 1.3.1 [SiS83] shows what machines fall into which classes.
Kuck's scheme is a more precise classification taxonomy; however, it is also

more cumbersome to use.

The descriptive taxonomy set forth in [HoJ81] describes the architecture of
a machine in an algebraic style suitable to printing and entry into a computer.

A SISD computer in this notation would be described as:

C=I[E-M]|

This means that the computer (C) is composed of a single instruction unit
controlling an execution unit (E) and a memory unit (M). There are twenty
rules that govern symbols, their use, and how they are connected. A synopsis of

this notation appears in both [HoJ81] and [SiS83].

Other descriptive taxonomies are set forth in {Gil83] and [BeN71]. These
notations, while similar to the notation set forth in [HoJ&1], have one
important conceptual difference. The notation in [HolJ®1] is specifically two
dimensional. i.e., the architecture of the system can be described in a two
dimensional manner. The notations in [Gil83] and [BeN71] are three
dimensional in nature, making them very difficult to parse. A discussion of each
of the taxonomies appears in [3iS&3], along with several examples. In general,

Flyon's hardware classification scheme will be used here. A special descriptive

.................
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Kuck'’s sixteen categorics of computer architectures [SiS83].

10

Table 1.3.1

SINGLE EXECUTION

MULTIPLE EXECUTION

DESIGN

TYPE SCALAR ARRAY SCALAR ARRAY
ILLIAC IV
SCALAR | PDP 11/45 | STARAN CDC 8600 OMTN.60
(PASM) CPU
SINGLE {TRAC)
INSTRUCTION
CRAY-1
ARRAY | 2L0G 280 | CYBER NONE BSP
203/205 KNOWN CDC 7600
TIASC
BURROUGHS FMP | DENELCOR HEP
SCALAR | CDC 8800 NONE DATA FLOW PASM
PPU KNOWN (PASM) (TRAC)
MULTIPLE (TRAC)
INSTRUCTION
PEPE
ARRAY | UNDESIRABLE | NONE NONE CDC NASF
KNOWN KNOWN TRAC

PUMPS
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taxonomy is needed and is proposed in Chapter 4. There, computer hardware
needs to be described by its capacity and speed of execution in such a manner

that timing information can be simply obtained.

For the application in Chapter 4 that Flynn’'s taxonomy does not provide
enough information about system architecture to be of use. The taxonomy in
[Gil83] limits the level of description of a system in addition to not specifically
stating how a system’s resources are to be connected. A more explicit
representation of the overall system architecture can be found in [BeN71];
however, this description is two dimensional. Thus it is inconvenient to store

in a computer, and quite difficult to analyze. Finally, it is undesirable to apply

the taxonomy set forth in [HoJ81] because the depth of the description is

- arbitrary. Therefore, different people can differently describe the same machine.
Thus, while all of the above taxonomies are of importance. none is directly
_ applicable to the application in Chapter 4.

1.4. SIMD Systems

The SIMD systems discussed in this work fall into the following two
categories. Bit-serial systems are composed of PEs that can process only a
single bit at a time. Bit-parallel systems are composed of PEs that process
multiple bits at once. Such PEs are said to process words. CLIP4 [Duf&2].
DAP [Red79], MPP [Bat30, Bat82], and STARAN [Bat74, Bat76, Bat77b,
Pot82} are all bit-serial systems. ILLIAC IV [Bar68, Bou72], MuRSS [SmS8&2],

and PASM ([SiS81] are all bit-parallel or word organized system. All of the
systems, except PASM, are purely SIMD machines. PASM, however, can be *"._-Ed!
either SIMD or MIMD as needed.
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Section 1.4.1 will discuss DAP, CLIP4, and STARAN. The strengths and &
weaknesses of DAP, CLIP4, and STARAN are presented in Section 1.4.2. ‘
ILLIAC IV and its applications have been extensively discussed in [Bar68, :
Bou72, HoS82, Sto80, Thu76]. PASM is described in Chapter 2. Both MuRSS '?:
and MPP are presented detail in Chapter 3. For brevity, a discussion of
ILLIAC IV, PASM, MuRSS, and MPP is omitted here. L
1.4.1. Three Bit-serial SIMD Systems

The Cellular Logic Image Processor (CLIP) series of processors was first -
completed in 1971. Since that time, five variations on the original machine \ K
have been built. Most recently, CLIP4, a 96-by-96 processor array, designed to
process video input from a TV camera, was completed. The organization of g'
the CLIP{ system is shown in Fig. 1.4.1.1 [Duf&2]. Each PE has 32-bits of ‘
memory associated with it. The incoming video image is digitized into 6-bit ‘;‘_
quantities which are then processed bit-serially (as six bit-planes) by the 96- ‘i
byv-96 array of PEs. To control the array, extract instructions, and. coordinate
the peripherals associated with the array. a controller i1s provided. A PDP-

11/10 acts as host for the system. b‘—‘:—

A PE in CLIP4 can communicate with either its eight nearest neighbors or
its six nearest neighbors depending on which communication mode is selected.
These two modes are shown in Fig. 1.4.1.2 [Duf®2]. The internal organization !
of a PE is shown in Fig. 1.4.1.3 [Duf&2]. The boolean processor can perform all "
boolean operations on single-bit inputs. Addition (subtraction) can be done by _,__
performing the logical operations to generate the sum (difference) and then j.%
generating the carry (borrow). Carries (borrows) are then routed through the \

.
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Fig. 1.4.1.2 Interconnection in CLIP arrays [Duf82]
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gating array for use in calculating the next bit.

In conclusion, CLIP4 can perform picture element (pixel) independent
operations, l.e., operations where each pixel is treated independently of its
surrounding pixels, as well as many nearest neighbor operations. CLIP4 is

capable of performing a variety of image processing tasks in real-time.

To process computationally intensive tasks, the Distributed Array
Processor (DAP) project was started at ICL in 1972. The result of this project
was a 64-by-64 array of PEs called the ICL DAP. Unlike CLIP4, DAP is 4-
connected. This corresponds to a subset of the eight nearest-neighbor
interconnection function presented in Fig. 1.4.1.2 consisting of connections 2, 4,
6, and 8. The architecture of the PE is shown in Fig. 1.4.1.4 [Red79]. The ALU
in a DAP PE is very simple. Many logical functions must be broken down into

sequences of AND and NOT operations.

Instead of having 32-bits of memory associated with each PE, like CLIP4,
the DAP PEs have 4k-bits of RAM associated with each PE. All input and
output to DAP is done through the hosts memory, i.e., the DAP memories are
a portion of the hosts memory. This has the advantage that it eliminates idle
transfer time, but it requires the DAP to be used in conjunction with an ICL
2000 series mainframe, which is expensive ( cost: $ 1,000,000 and up) [Ger83].

A detailed comparison and contrast of DAP, CLIP4, and MPP appears in
[Ger83].

STARAN [Bat74, Bat76] is a bit-serial system that differs greatly from
CLIP4 and DAP. The original STARAN is composed of 256 PEs, a 256-by-256
bit Multi-Dimensional Access (MDA) memory, and an interconnection
network. The MDA memory can be accessed by bit-slices, byte-slices, words,

or by other portions. In STARAN-E [Bat77b], the MDA memory is composed
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of up to 256 256-by-256 bit planes of memory. STARAN-E is shown in Fig.
1.4.1.5 [Bat77b]. Instead of having the nearest-neighbor interconnections, like
CLIP4 and DAP, STARAN is equipped with a multistage permutation network
called the flip network. This is a multistage cube type of network [Sie85]. Its

capabilities are discussed in [Bat76).

Fig. '.4.1.6 [Thu76} shows the layout of the STARAN memory array.
Two registers, (X and Y) represent 256 1-bit PEs. The logic associated with
the X- and Y- register can perform any of the sixteen Boolean functions of two
variables. Inputs for the two variable Boolean functions are the present state
of the register and the input from the permutation network, which can either
be memory or the output of another PE. In addition for PE i, either X or Y,
may be used as a mask for an operation on the other register, Fig. 1.4.1.6 e.g.,
X; — f(X;network;) if Y; =1 (i=0, 1, ..., 255). The status of M; determines
which memory locations are modified for a masked write operation. Addition

on STARAN is demonstrated in [Bat74].

STARAN was designed to be connected to a variety of host computers as
a special purpose peripheral. Three systems cited in [Bat74] are: a DEC-
PDP/11. a Honeywell HIS-645, and an XDS ¥ 5. The application of STARAN
to fast Fourier transformation, sonar post-processing, and air traffic control are
all presented in [Bat74]. The application of STARAN to pattern processing is
discussed in [Pot82].
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1.4.2. STARAN, DAP, and CLIP4 -- Comparisons and Contrasts ENOR
The design of STARAN is vastly different from those of DAP and CLIP4. ﬁ‘
el
DAP and CLIP4 have simple nearest-neighbor inter-processor connections. ::H.:\.tj:
: St
. STARAN's permutation network, is more costly. For simple operations on < 'E
i binary arrays, such as erosion and dilations, the DAP and CLIP4 '
3 . s,
interconnection patterns are simple to use. However, on operations such as :}-?_}t:
FFTs, STARAN can use the permutation network for performing the butterfly
operations; this is not feasible using DAP and CLIP4. 2
CLIP4 processors can address a small amount of memory (32-bits each), '
DAP processors can each address 4K-bits of memory, and STARAN processors
L-.l\-'.\.
share one common memory store (some number of 256-by-256 bit planes). __
Thus, DAP and CLIP4 spend no time fetching and storing operands and

temporary results from a global memory, except for initial loading and final R
unloading. Both STARAN and STARAN-E with bipolar memory have

circumvented the problem of a global memory becoming a system bottleneck

by using memory that is faster than the registers on either DAP or CLIP4 and
that is as fast as the PE registers on STARAN. In addition, memory is
accessed in such a way that there is no network contention [Bat77a]. Thus,

there is no penalty for having the remote memory. The advantage of the

scheme used for STARAN is that permuting data through the network data

does not involve PE operations. For example, to transmit data in PE i's

memory to PE i+1's memory requires a reconfiguration of the network. For
both CLIP4 and DAP, this same operation would require a read from memory,
a store in the network register, a read from the network register, and a store in t
local memory. Clearly, the scheme used for STARAN is less cumbersome and EE:f;'_::;:
less time consuming. _~';:~?
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The bit-serial nature of the PEs allow a great deal of flexibility of
precision and representation of data. The PEs composing DAP are limited to
the Boolean AND and NOT operations, making operations such as addition
complex entities. The CLIP4 processor is capable of performing the Boolean
AND, OR, and EXCLUSIVE OR operations; however, the architecture of the
PEs facilitates addition. STARAN PEs are capable of performing Boolean
AND, OR, NOT, TRUE, FALSE, and EXCLUSIVE OR. In addition,
STARAN PEs can perform these operations with up to three arguments, (the
X-register, the Y-register, and input from the MDA), making a wide variety of

operations possible.

CLIP4 PEs have a small amount of associated memory, increasing control
unit overhead for tasks that require more than 32-bits of associated memory for
i parameters and constants. DAP PEs have a larger available memory (4K-bits).

STARAN-E avoids this problem with the 256 256-by-256 bit planes of memory.

Because of the organization of all three arrays, the method of calculating a
. function of a few variables and using the result to index into a table of entries
is extremely difficult, as the result of the calculation must be globally

transmitted by the Control Unit to each PE. According to [Ger83], this process

TER .. LT

: may be faster in a sequential machine. This is, however, a fault with bit-serial
:'-. processing, not these architectures.

In conclusion, three bit-serial SIMD architectures have been introduced
' and discussed. The bit-serial architecture lends itself well to a wide variety of
\. processing tasks and data precisions. Bit-serial processing makes operations on
} words (such as floating point addition) more difficult because the operands are
' processed one bit at a time.
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1.6. MIMD Systems

SIMD systems provide an environment where every PE performs the same
operations at the same time. Conditional operations, such as: if (condition)
then { A } else { B } require all PEs not satisfying the condition to be idled
while the remaining PEs execute the block of code corresponding to “A.” Upon
their completion, the active PEs are idled while the remaining PEs execute the
block of code corresponding to “B.” The idling of PEs reduces the potential
gains in the throughput that the system can give. For some tasks, SIMD
systems may not give desirable performance. MIMD systems may, for these
tasks, give an increased throughput over SIMD systems. The added flexibility
of MIMD systems comes with an increased cost of overhead to perform
synchronization when it is necessary. There are certain problems tha are not
appropriate to the single instruction stream limitations of SIMD machines,

justifying the extra cost of MIMD processing.

The architecture of a bit-serial MIMD system, Cytocomputer will be
discussed in Section 1.5.1. A word-oriented system, PICAP II, will be discussed
in Section 1.5.2. Two more word-oriented systems are discussed later. The CDC
FP 1irray and the proposed system PASM are is presented in detail in Chapter
2.

1.5.1. Cytocomputer -- A Bit-serial MIMD System

Cytocomputer was developed at the Environmental Institute of Michigan
(ERIM) to perform window or cell based image processing operations. Its name
comes from the Greek word “‘cyto,” meaning cell [Ste80, Lom80]. The concept

of a cell accurately describes the architecture of the Cytocomputer. With DAP
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- and CLIP4, there is one PE per pixel. An interconnection network is required
,' for window based operations. Cytocomputer uses internal storage in the PEs

to achieve the nearest-neighbor connectivity. One PE performs a given
N operation for the entirety of an image, greatly reducing the number of PEs
required. This significantly reduces the complexity, cost, and speed of

Cytocomputer relative to CLIP4 and DAP.

i The architecture of Cytocomputer is simple and is shown in Fig. 1.5.1.1
[Ste80, LoM80]. Cytocomputer consists of K (presently 80) identical stages in a
pipeline. Each of the stages is a fully table-driven cellular logic machine

i capable of performing operations involving either four, six, or eight nearest-

< neighbors. In addition, each stage has a point-by-point logic function, which is

capable of performing non-neighborhood operations, such as thresholding.

The nearest neighbor connectivity is achieved by loading data from the

SN

input stream (or previous stage) into a shift-register, as shown in Fig. 1.5.1.1.
g Only nine elements, arranged in a three-by-three square, in the shift register
are accessible at one time. This defines the neighborhood function. To be

consistent with [Ste80], let N be the number of elements in a row of an image.

TN N TTY AN L
S [ v .

Thus, to store the necessary amount of information to process a three-by-three
window, 2N +3 pixels must be stored by each stage or PE. Windows are
achieved as shown in Fig. 1.5.1.2 [Ste80]. Results of calculations are passed on
to the next stage for further processing. After their last use, the input data to

each stage are discarded.

i

Each of the PEs is driven by a common clock and is capable of performing
independent cell (window) operations. For each of the 80 stages, the time for a
pixel operation is 640 ns. Further increases in throughput are possible by

adding additional stages to the pipeline. The present speed of Cytocomputer

.............
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allows it to perform many applications at a real-time rate. Applications of
Cytocomputer to image processing tasks are discussed in [Ste80, PrD79,

LoM8o].

1.5.2. PICAP II -- A Word Oriented MIMD Machine

The PICture Array Processor (PICAP) was developed at Linkoping
University in 1972. It is an MIMD system with up to sixteen word oriented
processors connected to a shared picture memory through a time-shared high
speed bus. The ‘‘word-size” each processor operates on is a 64-by-64 window of
4-bit integers. The architecture of PICAP 1I is shown in Fig. 1.5.2.1 [KrD82).
PICAP’s picture memory consists of 4 Mbytes of interleaved RAM, which is
sequentially addressable. With this architecture, PICAP is capable of

processing multiple images simultaneously with littie overhead.

Tasks that are too large for a single PICAP processor can be subdivided
and placed on different processors. This offers a great deal of flexibility when

applying PICAP to large image processing tasks.

For PICAP II, the shared bus is capable of transmitting 4x107 pixels per

second, 40 times greater than that of its SIMD predecessor, PICAP 1. The host

computer is a PDP-11 series computer that is also used to oversee the operation

of the system. PICAP has a real-time video input and monitor, which allows _'._-_1_':
interactive image processing of image data. Pictures are interactively processed ‘-\
on PICAP through a structured high-level language called Picture Processing T
Language (PPL) [KrD82], which allows interactive processing, foading, and \\
display of images. A FORTRAN interface is also available. ::\:

.........
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Fig. 1.5.2.1 PICAP II system architecture [Krd82]
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:
A discussion of both PICAP I and PICAP II can be found in [KrD82]. e
.y

Applications of PICAP II to image processing tasks can be found in [KrG82].

1.8, Conclusions

Several SIMD and MIMD systems for image processing to were discussed.
Both word-oriented and bit-serial architectures were presented. General
descriptions and applications of a wide variety of processors for image
processing may be found in the following books: [Duf83], [DuL81), [Ful82], and
[PrUs2].

‘—-'.‘.'-'. . ,'.-~_- .~ e
L. -_-~ o -‘.' g
.n -

- . f - el
.-\~.'-.\~'-‘-'_-' X o - -"-'. o “~'~". \
o et et “- ..L.g'.a\.;, A s _h'f_.s_.x_.\_.~-1..4 )

- - ‘e "

‘y~‘ L‘-.‘\.:.h-,...\-. WA e




----------------

Ny
-’.-‘ .

Y o) 0
" '."l

:

LY

30

-,
L
-

Py

>,
AANS

o
o

CHAPTER 2
PARALLEL PROCESSING IMPLEMENTATIONS
OF A CONTEXTUAL CLASSIFIER

2.1 Introduction

‘Multispectral image data collected by remote sensing devices aboard
aircraft and spacecraft are relatively complex data entities. Both the spatial
attributes and spectral attributes of these data are known to be information
bearing {SwD78|, but to reduce the computation involved, most analysis efforts
have focused on one or the other. Characteristic spatial features include, for
example, shape, texture, and structural relationships. Useful research has been
accomplished in the direction of incorporating spatial information into the data

analysis process {e.g., [HaS73], [KeL76], [WeD76)).

The *‘class” associated with a given pixel is not independent of the classes

of adjacent pixels. Stated in terms of a statistical classification framework,

therc may be a better chance of correctly classifying a given pixel, if in
addition to the spectral measurements associated with the pixel itself, the
measurements and/or classifications of its ‘‘neighbors™ are considered as well.
The image can be considered to be a two-dimensional random process
incorporated into the classification strategy. This is the objective of

“‘contextual classifiers” {WeS71], in which a form of compound decision theory

is employed through the use of a statistical characterization of context. Recent ..{‘..:'lf
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investigations have demonstrated the effectiveness of a contextual classifier that
combines spatial and spectral information by exploiting the tendency of certain
ground-cover classes to occur more frequently in some spatial contexts than in

others [SwS80],{SwV81],[TiS81],[WeS71).

The practical utilization of this contextual classifier in remote sensing has
awaited the solution of two key problems: (1) lack of an effective method for
characterizing and extracting contextual information in multispectral remote
sensing imagery, and (2) the need to reduce the execution time of the very
computation-intensive contextual classification algorithm. The first of these
problems has been solved by development of an unbiased estimation procedure
which provides a good characterization of the contextual information without
requiring exorbitant amounts of classifier training data (‘‘ground truth”)
[TiS81]. Although the resulting improvement in classification accuracy is g:
significant compared to conventional no-context statistical classification i

methods, the practicality of the contextual classifier depends on the solution of

the second problem, the subject of this chapter.

A reduction in the execution time of classification algorithms such as the
contextual classifier (and even much simpler algorithms used for remote sensing
data analysis) can be achieved through the use of parallelism. There are several
types of parallel processing systems. An SIMD (Single Instruction stream --

Multiple Data stream) machine [Fly66] typically consists of a control unit, N

processors, N memory modules, and an interconnection network. The control
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unit broadcasts instructions to all of the processors. and all active (enabled) :.:_{*
Yy

processors execute the same instruction at the same time. Each active processor hart
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executes the instruction on data in its own associated memory module. The

interconnection network provides a communications facility for the processors
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and memory modules. An MIMD (Multiple Instruction stream -- Multiple :
Data stream) machine [Fly66] typically consists of N processors and N memory =3
modules, where each processor can follow an independent instruction stream. gt
As with SIMD architecture, there is a multiple data stream and an
interconnection network. CDC Flexible Processor (FP) systems are MIMD F
architectures that have been built [CDC77a}, [CDC77b]. PASM is a proposed Ao
partitionable SIMD/MIMD multimicroprocessor system for image processing R
and pattern recognition [SiS81]. For this application, the use of PASM in the ‘!p
SIMD mode of operation will be considered. o

Maximum likelihood classification [SwD78], often used in remote sensing,
classifies each pixel independently of all others. Using either the SIMD or

MIMD mode of parallelism, the image can be subdivided among the processors,

each processor classifying its own subimage. Thus, N processors would be able

to execute maximum likelihood classification approximately N times faster A
than one processor of the same type. However, parallel implementations of -.""{

_*.:,\"
contextual classifiers are, in general, not so straightforward, due to the use of :-\.;IE:

neighborhood information. The way in which parallel machines such as the
CDC FP system and PASM perform contextual classifications is examined in
the following sections. RN

Section 2.2 briefly describes contextual -classification and gives a

uniprocessor algorithm for performing it. The implementation of a contextual AN
classification algorithm on an FP system and a comparison of the timings :-::::
obtained on an FP system simulator to those obtained on a PDP-11/70 are
discussed in Section 2.3. In Section 2.4, the way in which PASM can be ;ﬁﬁf{-'f
applied to contextual classification is considered. '.‘3::;;




2.2. Contextual Classification

2.2.1. Definitions

The image data to be classified are assumed to be a two-dimensional I-by-
J array of multivariate pixels. Associated with the pixel at “row i and
“column )" is the multivariate measurement n-vector Xj; ¢ R" and the true
class of the pixel ©; ¢ = {w,...,wc} The measurement vectors have
class-conditional densities f(XIwk), k =12,..,C, and are assumed to be
class-conditionally independent. The objective is to classify the pixels in the

array.

In order to incorporate contextual information into the classification
process, when each pixel is to be classified, p—1 of its neighbors are also
examined. This neighborhood, including the pixel to be classified, will be
referred to as the p-array. To classify each pixel, the contextual classifier
computes the probability of the given observed pixel being in class k by also
considering the measurement vectors (values) observed for the neighbor pixels
in the p-array. Specifically, for each pixel, for each class in 2, a discriminant
function g is calculated. The pixel is assigned to the class for which g is the
greatest. Each value of g is computed as a weighted sum of the product of
probabilities based on the pixels in the neighborhood. This is described below
mathematically for pixel (i,j) being in class wy. (The description is followed by
an example to clarify the notation used. Further details may be found in

[SwS80],[SwV81].)
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where

X, € Xj; is the measurement vector from the ~*P pixel in the p-array (for

pixel (i.j))

©, € O, is the class of the 7th pixel in the p-array (for pixel (1,j))

f(X.,‘ ©.) is the class-conditional density of X, given that the 4th pixel is N ::f_:;
[N
gfﬁ

from class 6, E {?

A

GP(8;;) = G(©,,8,,...,8,) is the a priori probability of observing the p-array
6,6, ...,6, ;J_.:{.'

Within the p-array, the pixel locations may be numbered in any
convenient, but fixed order. The joint probability distribution GP is referred to

as the context distribution. The class-conditional density of pixel

measurement vector X given that the pixel is from class k is:

—[log] Tx| +(X-my) T H(X-my)]
f(X|w) = e 2 -

.
LN

.
PR
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vector for class k (size four vector), “T" indicates the transpose, ‘‘log” is the
natural logarithm, and | ;| is the determinant of the covariance matrix. This

is the same function as used for the maximum likelihood classification [SwD78§].

Consider, as an example, the horizontally linear neighborhood shown in
Fig. 2.2.1.1(a), where pixel (i,j) is the middle pixel, and assume there are two
possible classes: 0 = {a,b}. Then the discriminant function for class b is

explicitly:

&(X;) = (X, ] a)(Xy| b)I(X;] 2)G(a,b,a)
+1(X; | a)f(X,] b}(X3] b)G(a,b,b)
+1(X, | b)I(X,| b)(X;| 2)G(b,b,a)

+1(X, | b)f(X2[ b)f(X3| b)G(b,b,b)

After computing the discriminant functions of g, and g, for pixel (i,j), pixel
(i.j) is assigned to the class which has the larger discriminant value. (Edge

pixels of the image not having the appropriate p—1 neighbors are not

classified.)

Consider the case where there is a non-linear three-by-three context array
(neighborhood), as shown in Fig. 2.2.1.1(b). Here, for each g, with C classes,
there are C® product terms with nine factors in each term. In general, for each
g, there are CP7! product terms, each term having p+1 factors. In the
LANDSAT data used in the testing described in [TiS81], the percentage of
non-zero G%'s was about 19 (based on a size nine neighborhood and 14 classes),
so to conserve space and to increase throughput, only non-zero GP's are stored.

This technique will be discussed in later sections. All of the calculations are

done using floating point data.




-« . - -y P DN A S R Tl Sl P R At ditvl AU AN St b i e B al i o G ek sl ML s, C VT -Y . - Lt L - - o - 4
e TSN, LA A A AT e e e TR T e UV v T LA SRR i SR gl AR ol g i L RAte g g bl SNL 58 ot4 pSd o) org- ol
e < -
et .

36

NNTA TSR S V.

-

X, X, X,

(iJ-1) (13) (ii+1)

vy . . ..
IMERAES . AP RPhel

(a) Linear one-by-three neighborhood (p=2)

X, X, Xa

Xy Xg Xy

(i-1,3-1) (i-1,)) (i-1)+1)

(i.j-1) (i) (ilj+1)

(1+1,5-1) (i+1,j) (i+1,j+1)

{b)  Non-lincar three-by-three neighborhood (p =8)

v, e e e,

Fig. 2.2.1.1 Linear neighborhoods

s R T v e e e

R P T Y PR T T L S T e O O
i L R M H gt SRS U D

400D
LI . . « v 4 e -
ST T . T Sy e T
I'l..l‘

el LRI

Y . e R A
e [N

.................. R Lt e Tttt .
LA I T T T R W A YL A P L R

I - S .
" -
DN S % WA R % S S ™ SN ey : N
™ PO O I I e Pt I LTSRS T N AT AR L RIRNE S R VAR I TR LA A i Bt T
L!'L(l‘ PCACIE A ASAENP RPN AN PN P AR AN A -':-':1‘;_{':;‘.'(.'5'.' J:-'.':' '.{'.‘:‘.'.‘- R R “1




e R

A

AP

~

A

37

2.2.2. Uniprocessor Algorithm

The algorithm shown in Fig. 2.2.2.1 is a uniprocessor implementation of
the size three contextual classifier. f(X|67) is independent of the position
within a window, and thus does not change when a window is moved. This
algorithm is consistent with the theory presented above; however, to minimize
execution time, an array (called “‘hold” is used to store ‘“‘compf’’ values. Since
f(XI ©,) is required for all windows that contain pixel X, redundant
calculations may be eliminated by storing f(XI ©.) in a temporary array. The
stored f(X| ©.) is discarded when pixel X will no longer appear in any windows.

For the uniprocessor implementation, the temporary array is called “‘hold.”

Let ‘“hold(m,k)” be a two-dimensional array of size three-by-C, i.e.,
0<m<2 and 1<k<C. “hold(er,k)” (statement S5) is a vector of length C
containing the class-conditional density values (‘“‘compf’’ values, statement S3)
for the pixel (i,j) (‘‘cr” is an abbreviation for center). ‘‘hold(lt,k)” (statement
S4) and ‘“hold(rt,k)” (statement S6) are the analogous vectors for the pixel
(i.j—1) (the left neighbor) and pixel (i,j +1) (the right neighbor), respectively.
By using this array to save the class-conditional densities, each density (for a

given pixel and class) is calculated only once.

The algorithm calculates the class-conditional densities for the first three
columns each time a new row is to be classified and stores them in ‘‘hold.”
(statement S3). Each time a new pixel in a given row is to be classified
(statement S7), the pointers to these values in ‘‘hold” are updated (statement
S17). In particular, the data in “It” is disposed of, “It” is updated to point to
the data previously pointed to by ‘‘cr’”, “cr” points to the data previously

e

pointed to by ‘“‘rt’’, and ‘‘rt” points to the newly calculated data (statement

S17) for the incoming pixel.
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.
Main Loop .::;‘_:-
fori = 0tol-1do /* row index */ LA
for k =1 to C do /* for each class */ "_’::!‘_-_.:,,
for m = 0 to 2 do hold(m k) = compf(i,m,k) /* cols.0-2 */ e
It =0 /» hold(lt,k,) is left neighbor */ S0
er =1 /+ hold(cr,k) is pixel being classified */ X
rt = 2 /* hold(rt k) is right neighbor */ 8

for j =1 to J-2 do /# column index */
value = -1; class = -1 /* max ‘‘g" and class */
for k =1 to C do /* for each class */ RNy
current = g(lt,cr,rt k)
if current > value /+ compare with max */
then value = current; class = k

print pixel(i,j) is classified as "class” ‘.-
if j # J-2 then /* update hold pointers */ :.:;:’.;:;}
tp =1t It =crier =0t 1t = tp vy
fork =1toCdo /* compf's for next col */ :',-j;""_":',

hold(rt,k) = compf(i,j +2k)

Discriminant Function Calculation ;‘T-‘.':
fuction g(lt,cr,rt k) /* for pixel cr, class k */ ! __ :
sum = 0 /= initialize sum, used to accumulate g */ \;-:‘
for r = 1 to C do /= all classes for pixel (i.j-1} */ ::::-\.::
for ¢ = 1 to C do /* all classes for pixel (i.j+1) x/ :-:::':,
if G(r.k.q) # 0 /* do not multiply if G = 0 =/ =
then sum = hold(lt,r} = hold(cr k) R
* hold(rt,q) * G(r,k,q) + sum f':":'\-jf'
return (sum) /* sum contains value of g(lt,cr,rt k) =/ g :;f'.
Class-Conditional Density Calculation Y
function compf(a.b.k) /* for pixel (a,b), class k *
x = A(a,b) /* x is the pixel (a,b) measurement vector */
expo = ~[log| £,| + (x—m)TE, T (x—my)}/2
return (e**P°) /* return value of f(A(a,b)Ij) x/
‘
Fig. 2.2.2.1 Uniprocessor implementation of size e
three contextual classifier algorithm (p=2) 1122.-:::::
..
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The complexity of the algorithm is proportional to I¥J*C?® assignments,
multiplications, and additions, and I*J*C ‘“compf” -calculations. Typically,

10<C<60 for the analysis of LANDSAT data.

The algorithm can be extended for a non-linear contextual classifier with a
neighborhood of size nine (as shown in Fig. 2.2.1.1(b)). The complexity of the
algorithm would have growth proportional to I*J*C® assignments,
multiplications, and additions. The number of “compf” calculations would still
be I+J*C. In this case, ‘“hold” would be a (2«J+3)-by-C array (assuming the
neighborhood window moves along rows). Fig. 2.2.2.2 shows the pixels whose
“compf”’ values are stored in the ‘‘hold” array. The 2+J+3 pixels whose
“compf” values are stored in ‘‘hold” are chosen to make it unnecessary to
perform redundant “‘compf’ calculations. In general, when classifying pixel (i,j),
‘“hold"” has the ‘‘compf’ values for pixels j—1 to J-1 of row i—1, pixels 0 to J—1
(all) of row i, and pixels 0 to j+1 of row i+1. After the classification of pixel
(i.j), the values for (i+1,j+2) are added and the values for (i-1,j—1) are
removed. When the pixels on a new row are to be classified, call it i’, then the
values for pixels (i' -2,J-3), (i’ ~2,J-2), and (i’ —=2,J-1) are removed and the
values for (i’ +1,0), (i’ +1,1), and (i’ +1,2) are added. (This assumes row i’ is
classified after i’ —1.) Given this, the rest of transforming the algorithm for the

size nine square neighborhood case is straightforward.

In summary, the uniprocessor one-by-three algorithm was presented. The
extension to the three-by-three case was discussed. Extension to other size and
shape neighborhoods is similar. The next two sections discuss parallel

implementations using FPs and PASM respectively.
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2.3. MIMD Implementation on the CDC Flexible Processor System

2.3.1. Flexible Processor System

The Control Data Corporation Flexible Processor (FP) system is a
multiprocessor system which has been recommended for use in remote sensing.
The basic components of an FP are shown in Fig. 2.3.1.1. There can be up to
16 FPs linked together, providing much parallelism at the processor level. The
FPs can communicate among themselves through a high-speed ring or shared

bulk memory. A possible FP system configuration is presented in Fig. 2.3.1.2.

The instruction cycle time of each FP is 125 nsecs. An FP is programmed
in micro-assembly language, allowing parallelism at the instruction level. For
example, it is possible to conditionally increment an index register, execute a
program jump, multiply two 8-bit integers, and add two 32-bit integers -- all
simultaneously. This type of operational overlap, in conjunction with the
capability to use up to 16 FPs in parallel, greatly increases the speed of the FP

system.

The following list summarizes the important architectural features of an

FP:

User microprogrammable.

Dual 16-bit internal bus system.

Able to operate with either 16- or 32-bit words.

125 nsec. instruction cycle time.

125 nsec. time to add two 32-bit integers.

250 -nsec. time to mulitiply two 8-bit integers.

Register files of over 8000 16-bit words.

60 nsec. read/write time for register files.
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Fig. 2.3.1.1 Components of an FP ([CDC772],[CDC77b])
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Up to 16 banks of 250 nsec. bulk memory {each bank holds 64Kk words).

In order to debug, verify and time FP algorithms, a simulator and an
assembler were developed for a system of up to 16 FPs. The experience gained
through the use of the simulator has made evident the following advantages
and disadvantages of the F'P system.

Advantages:
Multiple processors (up to 16)
User microprogrammable -- parallelism at the
instruction level
Connection ring for inter-FP communications
Shared bulk memory units

Separate arithmetic logic unit and hardware multiply

Disadvantages:
No floating point hardware
Micro-assembly language -- difficult to program

Program memory limited to 4K microinstructions

Both the simulator and the assembler are designed to operate under the
UNIX operating system. They are described in [SmS80|. More details about
the FP system can be found in {SmS80],[SwS80],[CDC77a],[CDC77b).
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2.3.2. Linear Contextual Classifiers e

Consider using an N (<16) FP system to implement the contextual 2%
classifier based on a horizontally linear neighborhood of size three (Fig. 3
2.2.1.1(a)). Divide the I-by-J image into subimages of I/N rows J pixels long,
as shown in Fig. 2.3.2.1. This method of dividing the image is called striping.
Assign each subimage to a different FP. The entire neighborhood of each pixel
is included in its subimage. No interaction between FPs is needed, i.e., each FP
can process its subimage independently. A perfect factor of N improvement

speedup over a single FP occurs if I is a multiple of N. The degradation in

performance that arises when I is not a multiple of N is less than 1% for large
images [SwSg0).
An FP micro-assembly language version of the algorithm stated in Fig.

2.2.2.1 was written. Because each FP is microprogrammable, determining

\
program correctness and analyzing the execution time are done through the use :;',:S
of the micro-assembler and simulator. All floating point operations are done in :“:E:-
software. Mantissa normalization of all floating point operands gives rise to a y -_‘

* variation in the overall execution time per pixel. This variation can be as much ,;'::..

| as 10:1 [SmSg0]. ’E\}'

! Each pixel measurement vector consisted of four 32-bit floating point —:

:Z representations of 8-bit integers; the input data were converted to floating

. point notation prior to the execution of the classifier. This conversion is not - .ﬁ
inciuded in either the FP or comparative PDP-11 timings. Covariance matrices
consisted of ten 32-bit floating point numbers. Further, 32-bit floating point
numbers were used to represent the logarithms of the determinants of the . (
covariance matrices and the a priori probabilities. The pixel measurement *

vectors, covariance matrices, logarithms of the determinants of the covariance
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matrices, a priori probabilities, and a temporary variable array are all stored in
the ‘“large file" (see Fig. 2.3.1.1). Thus, in this case, each FP has all the
information it needs for performing the classification on its subimage stored in

its register file and no ‘“‘bulk memory’’ accesses are required.

If the number of non-zero a priori probabilities is small (less than 50%),
and the contextual information (configuration of classes} associated with each
GP can be stored in the space of one floating point number (32 bits), then any
algorithm that stores all a priori probabilities will waste memory space. This is
the case in the LANDSAT data used for this experiment. Each GP is stored as
two 32-bit quantities. The first 32-bit quantity contains information about the
class of each pixel within the p-array. For example, if G(3,3,2) is non-zero, the

word preceding it is a representation (catenation) of 3,3, and 2. This allows

[32/p] bits per class, ie., up to 2132/p] classes. (Thus, for the size three

neighborhood being considered, C can be as large as 1024.) The second 32 bits
is the value of the GP itself. Only the non-zero GPs are stored, so only the non-

zero GPs affect the computation time.

For larger windows (larger p), it is possible that 2132/p) will not be large
enough to include all possible classes. If this occurs, one or two additional 32-
bit words can be used to store the class information about the p-array. In such
cases, the non-zero GPs would have to be less than 30%% or 25% respectively in
order for this scheme not to require additional space. As stated previously,
based on an analysis performed, the percentage of non-zero GPs is much smaller

than this.

When this memory arrangement is employed, the needed class information
is obtained by masking off the desired bits and shifting the result right

(producing a number between 0 and 2l32k/pl—l, where k is a number between 1
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and 3 depending on the number of words used to store the class information.)
If the desired information does not cross a word boundary, this operation will
require 3p steps per non-zero GP (load, logical and, shift), otherwise it will
require 7p steps per non-zero GP (load, logical and, shift, load, logical and, add,
shift.) Consider, instead, using the straight forward approach of storing all GPs,
both zero and non-zero. For a window of size p, a p-element vector (containing
elements between 0 and C-1) is required in order to create the pC possible
window configurations. Incrementing an index value requires four operations
consisting of: storing the address of the index in the large file address register,
reading the index from the large file, incrementing the index, and the storing
the new value in the large file. This is done each time an index is incremented.
In addition, each time an index is incremented, it must be compared to the C.
If it equals C, it should be set to 0 and the next index incremented. 2p
operations are required (store address of index in large file address register and

store initial value of index) to initialize the indices. Thus, the time required to

handle the indices for this scheme is 2p+5f3(Ci) steps per GP (zero or non-

1=1
zero.) Thus, the proposed algorithm will not only be more space efficient, but it T

will run faster.

For the purposes of testing the FP implementation of the one-by-three i
R
linear contextual classifier program, measurement vectors from 30 rows of 16 %;_{-j_-l

pixels were classified. The data set consisted of a four-class subset of the

LANDSAT data used in [SwV81]. To provide a basis for comparison, a similar R
contextual classifier was run on a PDP-11/70 over the same test data. It was
found that lack of exponent range in the 11/70 floating point hardware :.".’
required extra handling. FP floating point algorithms are implemented in the ‘-
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software, so a 14-bit exponent was used to overcome this problem. A
description of the floating point software is available in [SmS80]. The FP ‘‘e”
calculations are based on those in [Har68]. Twenty non-zero GPs were chosen
for the benchmark tests. Running under the above constraints, the single FP

classifier took .035 secs./pixel, while the PDP-11/70 required .050 secs./pixel, a

30% improvement.

Using .05 secs. per pixel as the PDP processing time and .035 secs. per
pixel as the single FP processing time, a 16 FP configuration would perform
contextual classifications at a rate of 457 pixels per sec., as opposed to 20
pixels per sec. for a single PDP-11/70. There are, of course, cost differences
between these two systems; however, the purpose here is to show the gains
made possible by a multiprocessor FP system. In general, different size
horizontally linear (Fig. 2.3.2.2(a)), vertically linear (Fig. 2.3.2.2(b)), and
diagonally linear neighborhoods (Fig. 2.3.2.2(c)) of various sizes can be

processed in a manner similar to that for the horizontally linear neighborhood

of size three [SwS80].

2.3.3. Non-linear Contextual Classifiers

Consider non-linear neighborhoods, that is, neighborhoods which do not fit
into one of the linear classes. For example, all of the neighborhoods in Fig.
2.3.3.1 are non-linear. It can be shown that there is no way to partition an
image into N (not necessarily equal) sections such that a contextual classifier
using a non-linear neighborhood can be performed without data transfers
among FPs [SwS80|. The specific non-linear case under consideration is the

three-by-three non-linear neighborhood, shown in Fig. 2.2.1.1{b). First, the
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Fig. 2.33.1 Mon-linear neighborhoods
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single FP timings are considered, then the timings for an system of N FPs are

considered.

The eight-nearest neighbor contextual classifier is similar to the previously
described linear case. Differences arise in the calculation of the discriminant
function (discussed in Section 2.2.1), the method of updating the “hold” data
for a given window (discussed in Section 2.2.2), and the method of data storage

(discussed below).

Timings run from LANDSAT data from [SwV81] show that, on the
average, the FP implementation of the four-class, size nine square
neighborhood contextual classifier with all data entries and a priori information
stored in the large file requires .137 secs./pixel. A PDP-11/70 implementation
of the same algorithm requires .154 secs./pixel. Thus, there is an 11%
improvement. The improvement is not as much for this case as in the size three
horizontally linear case because the FP performs floating point operations in
the software. The more terms in the product term, the more time the FP will
spend normalizing intermediate results. Tests for the 11/70 were run with 50
non-zero GPs and four spectral classes on 52 lines of 16 pixels. A 30-line-by-16-
pixel subset of the above image was used to derive the FP timings for a 52-line
image. Pixels on the top and bottom line of an image are not classified, and
thus do not appear in the number of classified pixels. As a result, for the first
and last rows of an image, the classifier must calculate the class conditional
probabilities for these pixels without ever classifying them. Therefore, the
results are slightly biased in favor of the 11/70 implementation. Once again,
only the non-zero GPs are stored, so only the non-zero GPs affect computation

time.
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Using .154 secs. per pixel as the PDP processing time and .137 secs. pet
pixel as the single FP processing time, a 16 FP system would perform
contextual classifications at a rate of approximately 116 pixels per sec., as
opposed to the 6 pixels per sec. rate of a single PDP-11/70. This assumes,
however, that all needed data are stored in the large file, a somewhat
unrealistic .assumption. The use of the bulk memories for storing and sharing

data is discussed in the next three sections.

2.3.4. Processing of Images with Large Numbers of GPs

If the a priori probabilities are too large to fit in the register files, bulk
memory can be used to store the overflow GPs. The width of the bulk memory
is 16 bits. Each GP is composed of either two, three, or four 32-bit quantities.
One contains the GP itself, while the rest is the contextual information
associated with a given pixel (see 2.3.2). A 64-bit GP can be accessed with four
reads from bulk memory, while a 96-bit read can be accessed with six reads,
and a 128-bit GP can be accessed with eight reads. One of the special features
associated with an FP is that every time a read from bulk memory is
performed, the pointer to bulk memory is automatically incremented [CDC77a).
A read from bulk memory is accomplished in two steps [CDC77a], [CDC77b].
First the read must be initialized and second {after .250u—secs.) the data must
be read from the bulk memory [CDC77a).[CDC77b]. On the surface, it would
appear that a 16-bit read requires four clock cycles; however, this is not the
case. The read can be initialized in p;uallel with other operations; thus no time
is lost due to the initialization. An FP can wait for the data or it can execute

other instructions in the meantime. Thus, the total cost of a read from bulk
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memory is one instruction cycle per 16 bits. The cost, then, of accessing a GP
and its corresponding context configuration from the bulk memory is 2 + 2k
instruction cycles, or 250u—secs + kx250u—secs, where k is the number of
words used to store the context information. To perform the corresponding
operation from the large file requires .250u—secs., or two instruction cycles.

As an example, use the benchmark eight-nearest neighbor non-linear
context array, where k=1. Allow all 50 of the GPs to be stored in bulk

memory. The total time spent accessing the GPs is:

p—secs # of non—zero GP(=50) __ . p—secs.
0 X - = 25—
pixel pixel

.50

Only half of this time, however, represents additional processing time over
fetching the GP and its corresponding context array from the large file. Thus,
the additional processing time required to process a GP stored in bulk memory
is 12.5u—secs per pixel. When this is compared to the 137,000 u—secs./pixel
required for classification, this time represents a negligible cost. In the cases

where there are more classes, this ratio will become more negligible.

2.3.5. Processing of Images in Bulk Memory

If an image is small, data vectors may be stored in the large file. This was
the method used to acquire the timings presented. For actual images, however,
the large file is too small to hold the image data. Pixel measurement vectors
can be stored in bulk memory. There is, however, an additional cost associated
with reading pixel measurement vectors from bulk memory. Pixel data is

represented as a one-by-four vector of 32-bit floating point numbers. It was
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earlier stated that a 16-bit read from bulk memory requires the same amount
of time as a 32-bit read from the large file. Thus, reading a 32-bit number from
bulk memory will require twice as much time as a corresponding read from the
large file. Reading a data vector from the large file will require four instruction
cycles, or .5u—secs./pixel. Reading the same data from bulk memory will
require an additional processing time of four instruction cycles, or
.5p—secs./pixel. This is minimal when compared with the 137,000u—secs./pixel

processing time associated with the eight nearest-neighbor contextual classifier.

2.3.6. A 16 FP System

Consider the problem of using N (<16) FPs together to do contextual
classification with a square size nine neighborhood. Assume the image data is
stored in the bulk memories. The approach taken is to divide the image among
the FPs using the ‘‘striping’” method (Fig. 2.3.2.1). Each FP classifies the
pixels in its own subimage. Because the p-array is non-linear, FPs will have to
communicate to share subimage edge data [SwS80]. For example, to classify
the bottom row of FP 0's subimage, information about the pixels in the top
row of FP 1's subimage is needed (i.e., the neighborhood window crosses

subimages boundaries). Thus, some way to achieve this sharing is necessary.

The speed at which the contextual classifier runs depends on the floating
point algorithms which are implemented in the software. This can cause a
bottleneck in the processing if one FP is required to wait for another.
Synchronization can require large amounts of time if the full 16 processor array
1s used, since at each step, the slowest FP will determine the execution time.

Thus, asynchronous processing at the instruction level is necessary.
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An FP is capable of addressing up to three channels of 16-by-128K bytes
of bulk memory each [CDC77a|,[CDC77b]. The sharing of bulk memory is a
scheme that can be used for transferring data among FPs. One possible
implementation is shown in Fig. 2.3.6.1. Bus 0 of FP i will be shared with
FP i~1, while bus 1 will be local to FP i, and bus 2 will be shared with
FP i+1. An FP will be allowed to address only half of its L memory banks at
one time. This is done to facilitate double buffering. The other L/2 memory
banks will be accessible by the host. This allows the FP to classify one image
while the host unloads and stores the results of the previous classification and
then loads the next image to be processed.

Assume each FP will classify the pixels in I/N rows (Fig. 2.3.2.1). If
border areas are stored in the shared memory banks, a processor will begin

processing in banks of bus 1. Processing will continue through half of the L/2

banks in bus 1 to bank 0 on bus 2. After all the data in the banks on data bus

2 have been processed, processing will continue to the banks on bus 3.

Allowing 25% of FP i's data to be stored in the shared banks on bus 1,
5096 of the data to be stored in the local banks on bus 2, and 25% of the data
to be stored in the shared banks on bus 3, no contention will occur. Consider
that for processor i to ‘‘catch up’ with processor i+1, processor i will have to .
process more than 755 of its data in the time that it takes processor i+1 to
process 25%% of its data. Thus, contention is not a problem.

When an image is divided by the striping scheme, all non-linear windows -
will require FPs to share data. In particular, for the case of an A-by-A window,
(A-1) rows of ‘‘compf’/pixel values must be commonly accessible by adjacent
FPs. This is shown in Fig. 2.3.6.2. Assuming that an FP classifies all pixels '

in its subimage, that the pixel to be classified is in the middle of the window,
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and that A is odd, FP i (i>0) will require the (A—1)/2 bottom rows of data
from the subimage of FP i~1 to classify the top row of its subimage (in
addition to the (A—1)/2 rows of data from its own subimage). In addition, FP i
will require the (A—1)/2 top rows of data from the subimage of FP i+1 to
classify the last row in its subimage. Once the ‘“‘compf” values for a given
pixel are calculated, they do not change. Thus, if FP i calculates the ‘“‘compf”
values for the (A—1)/2 bottom rows of pixels from the subimage that “belongs”
to FP i—1 and stores those ‘‘compf” values and the ‘‘compf’ values for the top
(A~1)/2 rows of its subimage in shared bulk memory, FP i—1 will not need to
recalculate the ‘“‘compf” values for those pixels. While FP i is calculating the
compf values for the bottom (A-1)/2 rows of data from the subimage of FP
i-1, FP i+1 is calculating the “compf” values for the (A—1)/2 bottom rows of
data from the subimage of FP i. When FP i classifies the bottom (A—1)/2 rows
of its subimage, the needed ‘‘compf’ values will have already been calculated
by FP i+1. Thus, to classify the bottom (A—1}/2 rows of data from a given
subimage, FPs will not need to calculate any ‘“‘compf’” values, as they are
already stored in either the hold array or in the shared bulk memory. There is
little possibility that one processor will require data before it is ready. For a
processor to require such data, it would have to process (I/N)—((A~-1)/2) rows
of its data in the same time that another processor would have had to classify

less than (A—1)/2 rows of its data.




2.3.7. Processing of Large Images

Assume that an FP system is configured as previously described. If the
image to be processed will fit into bulk memory, the image can be processed
according to the “striping scheme’’ discussed earlier. There is, however, another

problem that can arise. An image may be too large to fit in the bulk memory.

Assume that there are L' bulk memory banks per FP for data, separate
from the bulk memory banks for the GPs, there are N FPs and that a three-
by-three neighborhood is being classified. If an image will not fit into the
N=*L'/2 bulk memory banks, the host will transmit only the leftmost
unprocessed columns of the image that will fit into NxL' /2 bulk memory banks
at a time, L' /2 banks per FP. While the FP is processing one subimage in one
half of its memory, the host can be loading the next subimage into the other
half of the bulk memory. This will overlap the FP operation with the host’s
operation. If an image and its associated data can fit in N*L’ memory banks,
it is still beneficial to use the striping scheme, as this will facilitate the
preloading of the next image to be processed. Fig. 2.3.7.1 is an example of how
an image is divided and processed. The FPs process subimages from left to
right. Each subimage will be processed as described in Section 2.3.6. The
stored class-conditional densities (‘“‘compf” values) for the rightmost two
columns of data must be saved, as they are needed to process the next
subimage. These columns of data will be stored in one of the L' memory
banks. This memory bank will not be accessed by the host, as it will contain
the “compf’’ values necessary for the FP to process the next subimage. The
exception to this rule is the last subimage. Since the FP will have no further
processing, it is not necessary to save these values. Neither the first nor the last

column an FP processes will be classified, as there is insufficient context

information.
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Since the floating point operations require variable amounts of time, an
FP processing its portion of the image may finish before the rest of the
processors. With the FPs running asynchronously, it is theoretically possible
for a given FP eventually to get two subimages ahead of its neighboring FPs.
Subimage edge data would be destroyed for the neighboring FPs if the host
were to load new data into the shared memory banks before the neighboring
two FPs had finished with the old data. To prevent this from happening, after

an FP processes two subimages, it must wait for the other FPs to finish.

When an FP finishes writing results into a bank of bulk memory, it signals
the host to read all necessary data from that memory bank, even though an
adjacent FP will need to read data corresponding to the subimage edge pixels
from that bulk memory bank to process the next subimage. Since a read is
non-destructive, the host reading from bulk memory will not hamper an FP
reading from the same bulk memory bank. All FPs accessing a given bulk
memory bank must set flags in bulk memory before the host can write to this
bank. This will prevent the host from overwriting data that is still in use. As
was stated in Section 2.3.2, with 20 non-zero GPs, a single FP classifier took
.035 secs. to classify a single pixel. Reading a pixel measurement vector from
bulk memory will require 4.0 p—secs.. Most of the execution time is spent in

mathematical calculations, not fetching data, so any possible contention will

have a negligible effect on pixel processing time.
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N
‘ 2.3.8. Summary
. In summary, the organization of the FP system given above will allow
contention-free sharing of data. This means that N FPs will be abie to operate
approxima—tely N times faster than one FP. Furthermore, the double-buffering
of the bulk memories will allow the loading of images to be processed and

!
LR R

storage of results to be overlapped with the classification operation of the FPs.

L AN

- 2.4. SIMD Implementations on PASM

2.4.1. Introduction

PASM is a dynamically reconfigurable multimicrocomputer system whose
design will support as many as 1024 processors [SiS81]. SIMD implementations
of contextual classifiers based on PASM are discussed in the next section.
First, a brief overview of PASM is presented, limited to those aspects of PASM

that are needed to understand the SIMD algorithms that follow.

2.4.2. Overview of PASM

Fig. 2.4.2.1 is a block diagram of PASM. The heart of the system is the
Parallel Computation Unit (PCU), which contains N processors, N memory
modules, and the interconnection network. The PCU processors are
microprocessors that perform the actual computations. The PCU memory
modules are used by the PCU processors for data storage in SIMD mode.

When a PCU processor is combined with a PCU memory unit, it is referred to

as a Processing Element (PE). The interconnection network provides a
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means of communication among the PCU processors and memory modules.

PASM uses data conditional and PE address masks to activate and deactivate

PCU processors in SIMD mode.

The processors, memory modules, and interconnection network of the PCU
are organized as shown in Fig. 2.4.2.2. A pair of memory units is used for each
PCU memory module so that data can be moved between one memory unit
and the secondary storage, while the PCU processor operates on data in the
other memory unit. Each PCU memory unit may be as large as 64K 16-bit
words. Two choices being considered for the network are the Generalized Cube
[SiM81b] and Augmented Data Manipulator [SiM81a]. Their relative merits are
currently under study [McS82|.

The Micro Controllers (MCs) are a set of microprocessors which act as
the control unit for the PCU processors in SIMD mode. Control Storage
contains the programs for the MCs. Each MC memory module consists of a
pair of memory units. This allows programs and/or common data to be moved
between Control Storage and one MC memory unit, while the MC is using the

other memory unit.

The Memory Management System controls the loading and unloading
of the PCU memory modules. It employs a set of cooperating dedicated
microprocessors. The Memory Storage System is the secondary storage for
these files. Multiple devices are used to allow parallel data transfers. The
System Control Unit is a conventional machine, such as a PDP-11, and is
responsible for the overall coordination of the activities of the other

components of PASM.
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The approach taken to contextual classification using PASM in SIMD
mode is different from that for the FP system, since the processors are
synchronized and there is no directly-wired shared memory. There are three
main differences between the FP and SIMD implementations. First, it is
technologically feasible to construct a multimicroprocessor SIMD machine with
many more than 16 processors. Second, there are differences in computational
capabilities, i.e., 16 FPs may be faster than 32 microprocessors. Third, in SIMD
mode, the program is stored in the control unit (MCs), which broadcasts it to
the PCU microprocessors. The control unit also stores the GP array, decoding
and broadcasting each element as needed. In the FP system, each FP stores a

copy of the program and GP array.

2.4.3. Linear Contextual Classification on PASM

Consider using PASM to implement the contextual classifier based on a
horizontally linear neighborhood of size three. If the image to be classified is a
typical LANDSAT [NAS72| frame (I1=3250,J=2340), 776 PEs will be assigned
7427 pixels and 248 PEs will be assigned 7426 pixels. Classification is
accomplished by having each of the PE's execute the serial algorithm of
Section 2.2.2 simultancously. For example, all PEs first calculate the ‘“‘compf™
values for their pixels. This is done simultaneously in all PEs, where the 248
PEs assigned 7426 pixels will be disabled for the last PE operations. All PEs
will then send their neighbor the “‘compf’ values that need to be shared. By
extending the previously discussed striping scheme to include a non-integer
number of rows assigned to each PE, this task division is realizable. The

modified striping scheme, shown in Fig. 2.4.3.1, requires 2C additional network
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transfers over the original striping scheme for sharing ‘‘compf” values between
adjacent PEs. This cost is negligible when compared to the classification time
of 7426 pixels. Each of the interconnection networks under consideration for
PASM can perform each of the 2C required data transfers in one pass through
the network, where each transfer involves N PEs i.e., when PE i is transferring
data to PE i—1, PE i—1 is transferring data to PE i—2, etc. On PASM, a PE
will get an instruction to send another PE the shared data. This differs from
the FP system, where an FP gets the data it needs on its own. The
asynchronous nature of the FP system makes this modification to the striping

algorithm less efficient on the CDC system.

An image may be so large that not all of the data will fit into the PCU
memory space allocated. The double-buffered memory modules can be used so
that as soon as the data in one memory unit are processed, the processor can
switch to the other unit and continue executing the same program. When the
processor is ready to switch memory units, it signals the Memory Management
System that it has finished using the data in the memory unit to which it is
currently connected. The processor switches memory units, assuming that the
data is present, and then checks a data identification tag to ensure that the
new data are available. 'ine Memory Management System can then unload the
‘“‘processed” memory unit and load it with the next subimage. For both the
one-by-three linear window and the three-by-three nonlinear window, this
scheme will require some mechanism to allow the “compf’ values for the last
two columns of a subimage in a given memory bank to be available when the

associated processor switches to the next memory unit.

One method of doing this maintains a copy of local data in both memory

units associated with a given processor, so that switching memory units does
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: not alter the local variable storage associated with the processor [SiS81]. In e

.I essence, this technique makes use of the conventional store through techniques,

as described in [Hay78]. This scheme would be used only when multiple

subimages are to be processed.

The time required to classify a LANDSAT frame is the same as the time
required for each PE to classify 7427 pixels. If each PE were to classify 7427
g pixels, 7,605,248 pixels would be classified, representing a speedup of 1024. For
a 3250-by-2340 image, PASM will classify 7,605,000 pixels in the same time.

This is 99.9979% of the theoretical improvement of 1024.

R

2.4.4. Non-Linear Contextual Classification on PASM

Consider implementing a three-by-three non-linear contextual classifier on

PASM. The I-by-J image is divided into N subimages. Each PE will be assigned

PILLHTE N A .

an (I/VN)-by-(J/VN) array as shown in Fig. 2.4.4.1. ¥ I is non-divisible by
VN, some PEs will have to process (I/\/N)-*-l rows of data, while others will
have to process I/ﬂ Similarly. if J is non-divisible by VN, some PEs will

[N SR

have to process (J/VN)+1 columas of data instead of J/VN. In all cases, the

T - v
Al

PEs processing the smaller amount of data will be disabled while the remaining

™

PEs continue processing. All of the PEs will execute the algorithm discussed in

Section 2.2. Each PE can classify all the pixels in its subimage which are not

on the subimage edges. All PEs can do this simultaneously. To classify

subimage edge pixels, the PEs must share data by passing information through
the interconnection network. For example, in order for PE 0 to classify pixel
(0.(J/VN)-1) it needs to get the “compf"* values for pixel (0,J/VN) from PE 1.

Both networks under consideration can perform each of the nearest neighbor
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0 i VN -1
vN VN + 1 2VN-1
I pixels
vN PEs
N-vN N-1
% J pixels
E vN PEs

Fig. 2.4.4.1. Dividing an image using a ‘‘checkerboard” pattern.
Each square represents one PE with a
(1/VN)-by—{J/VN) subimage.

The PE number is in the square.




inter-PE transfer operations in one pass through the network.

One way to share “‘compf” values among PEs is to have each PE first
compute and store the ‘“‘compf” values for its edge pixels in a vector called
EDGE. (Later, when a PE needs the “compf” values for these pixels in order
to classify pixels in its own subimage, they are read from EDGE, not
recomputed.) Each PE sends copies of these values to the appropriate
‘““adjacent’’ PE. A PE saves the value it receives in a vector OUTEREDGE.
Each PE accesses its own OUTEREDGE vector when it is ready to classify its
edge pixels. This method requires only ((2(I+J)/VN)+4)C parallel data
transfers. For each of the required transfers, the networks being considered for
PASM will allow all PEs to perform the transfer simultaneously. A
checkerboard division of the image was used since, in general, it requires fewer
inter-PE transfers than dividing the image by rows or columns. For arithmetic
operations and ‘“‘compf” calculations, a perfect factor of N speedup is attained. . :Z_:':
‘ This is done at the “cost”” of ((2(I+1J)/VN)+4)C inter-PE transfers. These E
data transfers are negligible when compared with the I«J*C/N “compf” i

computations.

2.5. Conclusions

Based on simulated results, timings for contextual classification on an FP

system have been presented and discussed. A potential system configuration for
the FP system has been presented, and its use discussed. For comparison,
timings have been presented for contextual classification on a PDP-11/70. It
was found that a PDP 11/70 runs at a slightly slower speed than a single FP

on the contextual classification algorithms examined. Further, it was shown
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that N FPs could execute contextual classification almost N times as fast as
one FP. Thus, the multiprocessor parallelism of an FP system can be

successfully exploited.

It was shown that N processors in the SIMD mode of operation could
accomplish contextual classification almost N times faster than one processor of
the same type. In particular, an SIMD algorithm for PASM to perform the

computationally intensive task of contextual classification was presented.

The FP and PASM approaches could be combined [SmS82]. A
multimicroprocessor SIMD machine with shared memories (as in the FP
approach) and no interconnection network would be an efficient special-purpose
system for performing contextual classification with various size and shape

neighborhoods.

Thus, through the use of parallel computer systems, such as PASM and
CDC FPs, the types of computations required for contextual classifiers and
other computationally demanding remote sensing processes can be implemented
efficiently. This will not only reduce the computation time required to do
contextual classification, but will also allow the investigation of techniques

which may otherwise be considered infeasible.
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CHAPTER 3
PARALLEL PROCESSING CONCEPTS FOR
REMOTE SENSING APPLICATIONS

3.1. Introduction

Multispectral image data collected by remote sensing devices aboard
aircraft and spacecraft are relatively complex data entities. Because of the
multispectral nature of remote sensing image data, vectors are used to
represent the data. The execution of even the simplest classification algorithms
may require large amounts of computation time. Thus, in order to allow
complex classification algorithms to become more feasible, special hardware
(such as the previously discussed parallel architectures) to increase the

execution speed is of interest.

For many remote sensing tasks, all pixels in a given image are treated in a
similar fashion. This implies that the same numerical operations are done on all
pixels. Thus, the same instructions are performed on multiple data sets. It
would appear that SIMD machines, such as those discussed in Chapter 1, are
particularly well-suited to these tasks. Further, since images as large as 3250-
by-2340 pixels [NAS72] are common, a system that has as many as 1024
processors would be well-suited for image processing tasks. Large scale

integration makes just such parallel systems possible.
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The applications of such a machine to image processing tasks is the topic

i

under consideration here. Section 3.2 introduces a potential machine
architecture. Sections 3.3, 3.4, 3.5, and 3.6 discuss how such a system can be
applied to smoothing, maximum likelihood classification, contextual
classification, and image correlation, respectively. The fault tolerance of
MuRSS is discussed in Section 3.7. Enhancements to the MuRSS architecture
to increase fault tolerance are presented in Section 3.8, where the fault
tolerance of both the original and enhanced systems are compared. An
overview of MPP, the Massively Parallel Processor (an already existing
architecture) is presented in Section 3.9, along with a discussion comparing
MPP to the enhanced MuRSS system in the areas of performance, capabilities,

and fault tolerance.

3.2. Machine Architecture

The proposed SIMD architecture, Multimicroprocessor Remote Sensing
System (MuRSS), is shown in Fig. 3.2.1. The system consists of N+1
processing units (PUs) numbered from 0 to N and 2N +2 memory modules
numbered from 0 to 2N+1 (Fig. 3.2.2). During normal operation, N PUs
(numbered 0 to N-1) and 2N memory modules (numbered 0 to 2N-1) will be
used (Fig. 3.2.3). PU number N, memory module number 2N, and the wrap-

around connection are for fault tolerance.

Each PU will be a commonly available microprocessor, such as a 68000

[Mot80] equipped with a floating point unit and will be connected to four

busses in addition to its own private bus. The private bus will be connected to

the PU’s private memory which will contain such things as local variables and
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HOST
Note: <A> denotes wrap-around connection
Fig. 3.2.2 N+1 PU MuRSS system overview
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monitor routines. One of the remaining four busses will be used to
communicate with the control unit, while the other three busses, numbered 0,1,
and 2 (Fig. 3.2.4), will be connected to banks of memory. Two of these busses
will be connected to ‘‘shared” memory banks. Thus, these busses, and
consequently the associated memory banks, will also be connected to adjacent
processors. This will allow data to be shared among adjacent PUs for window
based operations, like the contextual classifier discussed in Section 2.2. (Note
that the 2 bus of PU N will share its memory with the 0 bus of PU 0 for
reasons discussed later). The third bus will be connected to a ‘‘local” memory
bank. Each of the three busses of a PU can address up to 28 64K-byte banks

of memory.

It would appear that direct PU-to-PU intercommunication could occur
through the shared busses. This is not possible because MuRSS is an SIMD
architecture with no special latching hardware on the shared busses. Since all
the PUs must either read or write simultaneously, data cannot be shipped from
PU-to-PU without some form of latch (like the shared memory). Thus, PU-to-
PU intercommunication must be done through the shared memory. (Such
latches could be added to the design, but for the applications investigated thus
far, the use of the shared memory for communication appears to be sufficient.)
Therefore, the memory banks that are ‘‘shared” can be used to store common
data for a PU and its linearly adjacent neighbor, eliminating the need for a
more complex interconnection structure when performing window-based

processing operations.

Memory contention is not a problem, as the only way contention can occur
is if two processors try to access the same shared memory banks. This cannot

happen with this SIMD system, since whenever processor I is using its 0 bus,
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processor I-1 must also be using its 0 bus (it cannot, for example, be using its 2
bus) (Fig. 3.2.4). For the purposes of this discussion, the memories (either
directly or indirectly) associated with busses 0 and 1 of PU I will be said to be
associated with PU I. In general, memory modules 21 and 2I+1 will be
associated with PU I, shared memory module 2I with bus 0 and local memory

module 21 +1 with bus 1.

It is possible that the shared memories may be needed to store local data,
e.g., when there is too much local data for the local memories to handle. In
this case, only the memory addressable by the busses associated with each
processor (i.e., bus 0 and bus 1) should be used to store local data. Thus, for
PU I, memory module 2I should store data to be shared with PU I-1 and any
local data that will not fit into memory module 21 +1. Memory module 2I+1
should be used to store the majority of local data for PU I. Memory module

21 +2 should not be used for data local to PU 1.

This requirement is not a rigid requirement, i.e., when all 2N +1 memory
banks are working, PU I could use memory modules 2I, 2I+1, and 2I+2 for
local data; however, if even one memory bank fails, algorithms not satisfying

this requirement cannot be executed by MuRSS.

The organization of the memory is shown in Fig. 3.2.5. This figure
assumes that there are L memory banks associated with each bus. The
memory associated with MuRSS will be dual ported, allowing a given memory
bank to be connected to two busses simultaneously. One bus will be connected
to a MuRSS PU, while the other bus will be connected to the host. This will
allow the host to address the memories separately from the processors, enabling
the host to load/unload data into/from half the banks, while the processor

operates on data from the other half, maximizing overlap. This type of overlap
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Fig. 3.2.5  Organization of MuRSS memory
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is called double buffering and is similar to the approaches taken with the
CDC FP system in Section 2.3.6 and with the PASM system in Section 2.4.3
[SiS81]. Double buffering can be implemented in hardware, allowing the
memory to be addressed contiguously, simplifying the loading and unloading of
data. If the addresses associated with the memory banks (as viewed by the

host) are:

Use: Half | PU number | Bus Bank Address

Bit Positions: 35 34 - 25 214 23- 16 15 - 0

where the Half indicates which half of the double buffer is to be addressed, the
PU number is the number of the associated PU, and the Bus bit is the bus to
be addressed (0=left, 1=center). When a fault occurs, the CU can re-program
the PU numbers, so the remaining memory can b~ treated as contiguous by the
host (this is discussed further below). If all memory banks are attached to a
bus that is accessible by the host, the host can view the memories as
contiguous. each PU is associated with 29 §4K-byte memory banks, many
processors will not be able to directly this much memory (> 232 memory
locations), so the host may need to use some form of memory cont-oller. Some

memory controllers may allow a special micro-program to be installed to

facilitate handling the memory organization.
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Consider the procedures that the host must perform to address the pixel
(1,j) in an R row by C column image consisting of b-byte elements. Assume the

data is stored in column major format, i.e.,

o) | o K
r:' :.:
N (1,0) 1 -
E: (2,0 2
(R-1,0) R Memory
(0,1) R+1
(1,1) R+2
(2.1) R+3
(R-1,C-1) | RC-1

If each PU has the same number of columns of data, then pixel (i.j) is in PU P:
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where there are N PUs in use. The host can calculate the bus B to be:

. _PxC .
{0 iTTN <C
B =
1 else

where there are C’ columns of data stored in each shared memory unit. Let B’

be the base address of the array within the given memory unit. The address

within the bus would be:

address = B' + j—P—X—C*-(C'xB) xR +ifx b

N
This looks very complex, but these calculations must be done only once per RO
RGN
column. Further, if many columns of data are to be loaded/unload into/from T

the memory units, the following algorithm can be applied:
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int P;

int B";
int B”;
int C’;
int C”;

int N;

86

/* PU counter */

/* Base address of array in shared memory */
[+ Base address of array in local memory */
/* Columns of data stored in shared memory */
/#* Columns of data stored in local memory */

/* PUs in use */

for(P=0;P < N;P =P +1){/*foreach processor */

}

/+ completely unload bus 0 of Processor P /

read (b*R bytes from address B’ of bus 0 of PU P);

/* completely unload bus 1 of Processor P */

read (b*R bytes from address B” of bus 1 of PU P},

This type of scheme is particularly convenient if a memory controller is

used and the memory controller can perform Direct Memory Access (DMA) to

and from the host’s memory. If DMA is used, the above algorithm for

unloading data from an N=1024 MuRSS would require:

2048 block reads
1024 compares and
1024 additions.

Further, if the entire ‘‘half 0" or “half 1" of the memory banks are to be

read/written,

only one read/write (of size 23° bytes) would be needed. These

transfers could occur between MuRSS and the host’s secondary memory or the
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host’s primary memory if it is large enough.

Loading and unloading of data by rows is very complex because the image
data is stored in columns. The following algorithm demonstrates how the host .
must unload row data from MuRSS when an image is stored in column major

format:
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: int P; /* PU counter */
int B; /* Base address of array in shared memory ¢/ =
! . " . ’ !}-".}
X int B”; [+ Base address of array in local memory */ )
: R
M int C'; /% Columns stored in shared memory */ ‘ :':'_:

int C*;  [# Columns stored in local memory */

int bR; [+ Bytes of data per column */

) int I\}; /* PUs in use s/
int i; /* Row counter */
. int j; /* Column counter */

for (i=0;i < R;i=i+1) { /* each row */
for (P=0;P < N;P=P+1){ /* each processor */
for ( j=B'; j < bRC’; j=j+bR ) { /+ shared columns */
/* unload one data item from bus 0 of PU P */

> [ 4

read (b bytes from address j of bus 0 of PU P);
}

for (j=B” ; j < bRC; j=j+R"™ ) { /# local columns */

.‘ .l.' .'_‘- .‘l "l

/* unload one data item from bus 1 of PUP s/

read (b bytes from address j of bus 1 of PU P); T

This algorithm represents a significant number of calculations on the part

of the host. With the large number of individual reads, each which takes time

PSS

to create a system buffer, it is less cumbersome for the host to unload the

B
PR

image in column format and transpose the image in its own memory.
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If the image is loaded in row major format, the algorithms are similar, but

rows and columns are reversed. Similarly, for such a scheme, it is simple for
the host to deal with row data and complex for the host to deal with column
data. Given that an image is treated consistently (i.e., not transposed during
loading or unloading), MuRSS can handle data in either row major or column
major format without excessive processing. For example, consider the image in
Fig. 2.3.2.1. Here, each PU would bold an entire stripe I/N-by-J pixels large,
effectively processing the image in row major format. The shared data in Fig.
2.3.6.2, as required for classification of non-linear windows, would be stored in

the shared memories.

Consider an image stored in column major format. Define the relative
index of the pixel (i,j) to be the row and column of the pixel relative to the
uppermost left pixel in the PU’s address space. In an image stored in column
major format, the absolute pixel (i,j) would have relative address (i,j'), where j’
is the number of columns to the right of the leftmost column addressable by
the PU. Thus, if each PU could address ten columns of data, the relative

address {1.0) would correspond to the N pixels whose absolute addresses were
{(1,10 x k) ' k=0,l,2,...,N-l]. Typically, if C' columns of data were stored in

the shared memory associated with bus 0 of PU I, then C'/2 pixels would be
processed by PU I-1 and C’/2 pixels would be processed by PU I, as was done
for the FP system discussed in Section 2.3.6. This means that PUs will
typically start their processing for the pixels with relative address (0,C'/2).
For pixels with relative address (i,j’), if there are C' columns of data associated
with busses 0 and 2 and C” columns of data associated with 1, the bus can be

determined as follows:
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i s
5 0 jl < CI
: bus=71 C <j <C +C
| 2 else
The address of the pixel (within the bus) is:
N [ bx (! xR + i) bus 0
2
I':j address ={ bx ((j —C') x R + i) bus 1 :l'_‘."".:l
. L bx (' ~C' -C'")x R +i) bus 2 i
N =
T
Addressing within a given column requires setting a pointer to the base address R
of the column and incrementing or decrementing it by a fixed amount. If "‘
(N > 28) and BN
‘--\:s:‘:-'
The CU will be a special purpose processor. It will be equipped with :}’
-'\J‘\
) memory, in which it will store its program, global data, the program to be S
5 broadcast to the PUs, and its local variables. The amount of memory is )
I
- variable and is a function of cost and the processor chosen for the CU. ]

The host will be assumed to be a computer such as an IBM-370 or a PDP-

11 series machine. All support operations, such as formatting input and
formatting output, will be performed by the host.

Each PU is based on the Motorola 68000 microprocessor. From {Mot81], a
12.5 MHz 68000 can perform a 16-bit integer addition in 400 nsec. The 1024

68000's in MuRSS can perform 2560 million integer additions per second. In
addition, MuRSS equipped with Motorola's high speed floating point software

....................................

........................................
..............................................................................................
.....................................
...........................................
------------------------------
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. can perform 73 million 32-bit floating point additions per second or 36 million
l 32-bit floating point multiplications per second. When the PUs are equipped
with the planned 16.666 MHz MC68881 floating point processor, MuRSS is
v
¢

capable of 367 million 32-bit floating point additions, 330 million 32-bit floating

point multiplications, or 270 million 32-bit floating point divisions per second.

u,‘i’

PR

All floating point operations are in accordance with the IEEE floating-point

specification P754.

3.3. Smoothing on a Parallel SIMD Machine

Smoothing is a method of noise reduction for image data. The
measurement vector for each pixel is replaced by the average of the
measurement vector for that pixel and the measurement vectors of the eight
surrounding pixels. Consider the following example, as shown in Fig. 2.2.1.1(b).

X;;» the measurement vector for pixel (i,j) is replaced by:

o = (Xi-pj-1 X1 F X F X HXG X P X e X e F X 4)

1} g

Thus, for each pixel, eight vector additions and one division of a vector by a

constant is required. Consider the case where each measurement vector is 4-

dimensional and the image is I-by-J pixels. Smoothing the image on a serial

machine will require 8«[*J vector additions and I+J divisions, translating to

32xI+] additions and 4*I*J divisions.

If 1 is sufficiently large (> 2N+1) and a multiple of N. the image can be
divided into N rows I/N pixels high as shown in Fig. 2.3.2.1. This scheme is

called striping and has been discussed in Section 2.3.2. Each processor will




process one stripe. In order to process all pixels in a given stripe, a processor
will need to access one row of pixels from each bordering stripe. This means
that at least two rows of data will have to be stored in shared memory. For
example, with a 512-by-512 image and 32 processors, processor 0 will process

rows 0 to 15, while processor 1 will process rows 16 to 31, etc. Memory 0 will

TLT L TN W W W w, e W  wem——— .~

store rows 0, memory 1 will store rows 1 through 14, memory 2 will store rows
15 and 16, etc. Note that memories 0 and 2 could contain more rows of data.
. In general, up to two rows of data must be stored in each shared memory. The

rest of the image can be stored in the local memory banks. The total
, processing time associated with an image is: 32«I+J/N additions and 4x[*J/N

'_ divisions. Thus, the theoretical maximum speedup by a factor of N is achieved.

If I is not a multiple of N, all processors will process I,I/N] rows, then I
mod N processors will have to process one extra row of data. For simplicity,
assume that rows cannot be subdivided. Thus, some processors will have to
process a stripe [I/N] rows wide, while other processors will have to process a
stripe [I/N] rows wide. If each row is J pixels wide, the total processing time

associated with a given image will be:

32xJ([I/N])  additions

| 4xJx([I/N))  divisions
I This represents an increase of at most 32+J additions and 4+] divisions over

the ideal case. The efficiency of the above implementation can be represented

by the ratio of the time required for an ideal speedup to the actual processing

i time [SiS&2b|. This translates to:
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The worst case efficiency is achieved when one processor is running while the

remaining processors are idled. Mathematically, this is when the difference

between I/N and [I/N] is a2 maximum. For example, with N=1024 and an
image with 4097 rows, this represents an efficiency of 80%, while for [=65537, _‘_,_, 3

this represents an efficiency of 98.4%. The larger the image, the closer the

efficiency is to 100%.

Note that the efficiency is a function of the number of rows. Processing ‘.'.'”“'
columns instead of rows will make the efficiency a function of the number of
columns and may allow N processors to operate more efficiently. An
alternative to the above method is to use the ‘“modified striping” scheme

discussed in Section 2.4.3.

The time required to smooth an image using modified striping is:

32+ [1xJ/N] additions

4x[1xJ/N] divisions

For the ideal speedup of N, the ceiling function would be absent, thus the ratio

of the ideal speedup to the actual speedup becomes: ‘_

I+J/N
[1<3/N]

For N=1024, and an image of size 1025-by-4097. the efficiency is 99.99 + .
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This method, thus, leads to a higher overall utilization of the processors.
Further, for images greater than 2N-by-2N, the utilization is independent of
the orientation of the image, i.e, whether the image is striped based on rows or

columns.

If edge data is to be handled differently than data internal to the image,
when one or more processors reach an edge, all other processors must be
disabled. The remaining processors then process their edge data. This is not
required in the simple striping scheme, as all the processors reach an edge at
the same time. In a modified striping scheme (with horizontal stripes), the

probability that a given processor is processing an edge pixel is:

_2+[yn]
pedse I*J/N

In addition, each PE must decide (for each pixel it processes), whether that

pixel is an edge or non-edge pixel. The modified striping scheme requires
2#( [I*.I/N]) more comparisons and a maximum of pedge*[I*J/N] more edge
pixel computations than the simple striping scheme in the ideal case where I or
J divides N. Simple striping requires at most 2 more edge pixel computations
and [-2 more internal pixel computations than simple striping in the ideal case.
The striping scheme to be used should minimize the number of computations

above the ideal case.

Images smaller than 2N rows have not been considered, as they do not
have enough rows to utilize the full machine. Each processor will have to store
at least one row of data in each of its shared memory banks. This implies that

there are at least two rows of data per processor. Multiplication of the two

.
o
p
.
"
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row minimum by the N processors yields 2N rows. If striping is done by

K

columns, then the argument is similar. To process small images (using rows),
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[1/2] processors would have to be enabled, while the rest of the processors were

disabled for the entire task.

3.4. Maximum Likelihood Classification

Maximum likelihood classification (MLC) [SwD78] classifies each pixel
independently of all others. Assume that the input data can be described by a
Gaussian distribution function {SwD78]. Thus, the probability that pixel (i) is

in a given class wy € Q = {w),wy, - - - wy} is:

I (X MOTE( M)

p(Xul wk) - ———e
NN

where X;; is the measurement vector for pixel (1.j), M is the mean vector for
class k, &, is the covariance matrix for class k. A pixel is assigned to a given
class such that p(Xijluk) is maximized. It is possible to use a discriminant

function [SwD78]:

Sk +(Xij—mk)TS{l(.\'ij-mk)

d(XUI w‘k) = _[]n

Maximizing this last discriminant function for X; over 7 will yield the same

j
result as maximizing p(f\';jl w)) over the same ). The discriminant function is
considerably less complex to calculate than the probability, so discussion is

based on the discriminant function.
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The calculation of ~In and T;! is done once for each information class

y

and is negligible when compared to the calculation of the discriminant function
for each class for each pixel in a given image. Again assuming Xj; is 4-
dimensional, X;~m; can be done in four additions per class per pixel. By
utilizing the symmetry of I, !, (Xij—mk)Ek"(Xij—mk) can be performed in 20
multiplies and 9 additions for the four spectral band case. Thus, the
calculation of the discriminant function will require 20 multiplies, 15 additions,
and one sign change per pixel per class. Finally, for C class data, C-1
compares per pixel will be needed in addition to the calculation of the
discriminant function. On an I-by-J image. classification of all I«J pixels will
require 20*x[+J*C multiplications, 15*IxJ*xC additions, and IxJ=(C-1) compares
for a standard serial processor.

Consider implementing the MLC on MuRSS. The CU will broadcast class
dependent constants, such as ! and m; as part of the SIMD program. Each

pixel is classified independently, thus there is no need for any inter-processor

communication. Using the modified striping scheme to divide the I-by-J image.

N PUs will be able to perform an MLC RS
1«J/N '
Teg/NT %

times faster than a single PU. Further, since this operation requires no inter-
processor data transfers, images as small as N pixels can be processed without

disabling PUs for the entire operation.
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3.5. Contextual Classification

The *‘class™ associated with a given pixel is not independent of the classes
of adjacent pixels. Stated in terms of a statistical classification framework,
there may be a better chance of correctly classifying a given pixel if, in
addition to the spectral measurements associated with the pixel itself, the
measurements and/or classifications of its ‘‘neighbors” are considered as well.
The image can be considered to be a two-dimensional random process
incorporated into the classification strategy. This is the objective of
“contextual classifiers” ([WeS71] and [SwV81]), in which a form of compound
decision theory is employed through the use of a statistical characterization of
context. Recent investigations have demonstrated the effectiveness of a
contextual classifier that combines spatial and spectral information by
exploiting the tendency of certain ground-cover classes to occur more
frequently in some spatial contexts than in others [SwS80], [WeS71], [SwV8l],
and [TiS81]. For a more complete description of contextual classifiers, please

refer to Section 2.2.1.

The application of MuRSS to contextual classification is a straightforward
extension of the method applied in Sections 2.3.2 and 2.3.3. For the three-by-
three window, data allocation and timing analysis is analogous to that for
smoothing. The main difference is that for smoothing, only the raw pixel data
is shared. For the contextual classifier, the ‘‘compf” values of the subimage
edge pixels are shared instead. The parallel processor version of the one-by-
three horizontally linear window is similar. Other sizes and shapes of windows

can be handled analogously.
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3.6. Image Correlation on a Parallel Machine

Image correlation, as described in [SiS82a], is used to measure the degree
of similarity between a match image and an equal sized area of an input image.
Typical images can be at least 4096-by-4096 pixels, with match areas on the
order of 64-by-64 pixels. For the purposes of this paper, images on the order of
65536-by-65536 pixels will be considered.

Let the symbols x and y denote single elements of arrays X and Y, where
X is the match image and Y is the area of the input image under consideration
(same dimensions as X). Let M be the total number of elements in the match

area X. Define:

Sxx = (/M) Tx*~(Tx)?)
Sxy = (I/M)(Yxy=Yx¥y)
Syy = (/MY -y

Rxy = Sxy/vSxxSyy

Sxy is the covariance of the match area with a portion of the input area. Large
positive values for Syy indicate similarity between the match image and the
input image, while large negative values for Syy indicate similarity between the
negative of the match image and the input image. Values near zero indicate
little similarity between the two images. Ryy is the linear correlation
coefficient of the statistics. Simplistically Ryy is a normalized version of Sy in
which Ryy =1 indicates an identical match, Ryy = -1 indicates 2n identical

match with the negative of the input area, and Ryy = 0 indicates no

correlation between the match area and the input image. A correlation value
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will be computed for each position in which the match image can fit into the R

row by C column input image.

The calculation of Ryy is dominated by the time to compute Sxy, Sy,
and ,Syz. Y°x and Ex"" do not change from input window to input window,
and can thus be pre-computed. For a match template with r rows and ¢
columns, each Y xy and Y y® requires r+c multiplications and rc—1 additions.
Vy requires rc—1 additions. These operations have to be done for each
position of the match template in the input image. Special methods of
computing Ey2 and Yy can decrease the time requirements of this algorithm.
Consider the following algorithm for computing the sum of the pixel values

(Vy’s) in each match template.

Assume that for input image Y the position of the match area is defined
by the coordinates of the upper left hand corner of the match area. Define a
vector “‘colsum” [SiS82a] of length C as:
k+r-1

colsum(j) = ¥ Y(i,j)
i=k

where k is the row coordinate of the current portion of the match area and
0 <€ j<C. Let “SUM" be an R-r+1-by-C—c+1 array, where SUM;; is the sum
of the pixels of the input image for the match area position
(i), 0 <i <R-1+1,0 < j < C—c+1.

Initially, colsum is calculated for all C columns of row 0. SUM(0,0) is
formed by summing colsum(j) (0<j<e¢—1). This requires r*c multiplications
and (r*c)-1 additions. SUM(0,1) is formed by subtracting colsum(0) from
SUM(0,0) and adding colsum(c) to the result. In general:
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SUM(0,j) = SUM(O,j—1) — colsum(j—1) + colsum(j +c-1)

After the processing of a given row is complete, colsum(j) is updated for the
next row by subtracting Y(i,j) from the old colsum(j) and adding Y(i+r—1,j) to
the result. This changes the complexity for the calculation of the } y’s to: 3c—1
additions/subtractions per template position for the column 0 entries of all
other rows, and 4 additions/subtractions per template position for all other
template positions.

For a typical 64-by-64 match image, straight forward computation of ¥y
requires 4095 additions per match template position on the input image. This is
the same number of operations required per match template position in row 0
of the input image. For template positions in column 0 of the other rows, 191

additions are required. Computation of Eyz‘s is similar to the computation of

the Yy's.

Consider the application of MuRSS to this task. Each PU will apply the
serial algorithm to its assigned pixels. Pixels will be assigned to PUs based on
the vertical striping scheme. If a column of pixels lies in memory associated
with bus O or bus 1 of PU I, then PU I is responsible for the computafion of
the colsum and the analogous y* entries associated with that column. If the
pixel in the upper left hand corner of a window lies in memory associated with
bus 0 or bus 1 of PU I, then PU I is responsible for the computation of that
window. When PU I is performing computations on its rightmost ¢-1 columns,
it uses the colsum values stored in its bus 2 memory by the previous
computations of PU I+1 (recall that PU I+1's bus 0 memory is PU I's bus 2

memory). Thus, at least c-1 colsum values and the corresponding y values
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must be stored in memory associated with each bus 0.

For an R-by-C image and N PUs, a simple vertical striping scheme will
assign each PU a subimage either R—by-[C/Nl or R-by—[C/Nl . Thus, the
total time required for the calculation of the Y xy's is
(R-r+l)*([C/N]-c+l)*((r*c)—l) additions, and (R—r+l)*([C/N]-c+l)*r*c

multiplications. The total time associated with the calculation of the Y} y's is

(R-r)x((3%c)-1)] + [([c/NFe)s((rxe)-1)] + [(R-r)*([C/Nlc)*4] additions.

The time required to calculate the 2y2's is similar to the time associated with
the calculation of the Y y's. Extension to the modified striping scheme is
similar to the smoothing case.

If C < Nx(c—1), then c—1 columns of data cannot be associated with each
bus 0, thus the PUs cannot all be enabled. If R > Nx(r—1), the stripes can be

horizontal instead of vertical. In this case, r and ¢ are swapped, as well as R

and C.

3.7. The Fault Tolerance of MuRSS

The throughput of a MuRSS is limited to the largest number of adjacent
working (usable) PUs. Consider a simple example with an N=8 MuRSS system
(a PU fault is represented by BOLD print in a box).

Physicak 0 1 2 3 4 5 6 7[8

A single failure leaves eight usable PUs. (If there were no wrap-around
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iy connection, the number of usable PUs would be seven.) The CU can alter the
PU numbers and subsequently the numbers associated with the memory
modules. Thus, for the above fault the CU would renumber the PUs to (an *

indicates an unused PU):

Physical: 0 1 2 3 4 5 6 (7|8

Locigal: 1 2 3 4 5 6 T |+ |0

NN A

Fault detection procedures are beyond the scope of this work. In both this

e’ e A A

section and in Section 3.8., the concern is with fault recovery once the

existence and location of a fault is known.

When a2 MuRSS processor the renumbered MuRSS PUs start with logical
PU 0 to the right of the failed processor. The numbers continue incrementing,
through the wrap-around connection, ending up with the virtual PU N-1 on the
left of the failed processor. When a local memory module fails, e.g., 2[+1, it is
treated like a fault with PU I. A fault in a shared memory, e.g., 2I is treated

the same way.

It is possible for the faulty processor or memory module to fail in such a
way that that adjacent PUs cannot access the busses shared with the faulty
unit. In such a case, not only the faulty PU but the PU associated with the

inaccessible shared memory module would be unusable because of the inability

to access shared memory. Thus, this would be handled as if two adjacent PUs
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failed. This is a special case of the multiple failure situation discussed later.

A multiple failure, such as:

Physical: 0 1 2 3|45 6|7]S8

reduces the number of usable PUs to five. (PUs 5 and 6 cannot share data
with adjacent PUs, and subsequently could not be used for any algorithm
requiring data to be shared among PUs.) If either PU 5 or PU 6 or both were

also faulty, the same number of usable PUs would exist, as demonstrated

below:

In such an event, the PUs would be renumbered to:
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Physical?

Logical: 1 2 3 4 (e | s |« (0

Again, an * indicates an idled PU.

- A fault in a shared memory, e.g., 2I is treated the same way. Multiple
memory faults associated with the same PU I, only idle PU 1. Multiple
? memory faults associated with different PUs idle their associated PUs and

subsequently are treated like multiple PU faults.

It was previously stated that if any local data for PU I is to be stored in a
shared memory module, that it should be in memory module 2I. This is
required if an algorithm is to be run on a system with a single fault in one of
the shared memory modules. If this rule is not followed, a fault in a shared
memory bank would require the two PUs attached to a faulty shared memory

module to be disabled instead of one, decreasing the throughput of the system.

The minimum number of usable PUs in an N PU MuRSS with F PU

faults (or disabled PUs) can be expressed by the equation:

f
N F=0 :
Usable PUs (min) = ! -
Bl 1 <F N+ i
N
oA
X

This minimum occurs when faulty PUs are evenly distributed throughout the
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system. A few faults can seriously cripple MuRSS, as is shown in Fig. 3.7.1. It
is worthy of note, that this is a worst case possibility. If the failures are close

.
i together, the number of usable PUs will be greatly increased. For example, if
:i the faulty PUs are adjacent, the number of usable PUs is N-F +1.

3.8. An Enhanced MuRSS

To minimize the degradation of MuRSS in a multiple fault environment,
- consider the modifications shown in Fig. 3.8.1. The wrap-around connection
i between PU N and PU 0 is the same as before (see Fig. 3.2.2). In this figure
k describing the Enhanced MuRSS (EMuRSS), there is a bypass box
associated with each PU’s shared busses. The operation of the bypass boxes is

i controlled by the CU.

Ijj: In addition to the bypass boxes, there is deselection circuitry, such as the
SN74S244 [Uni78], between each shared memory module and its corresponding
bus. This circuitry will be used isolate faults in the shared memory modules so
that the shared busses are still usable. It is assumed that there is some form of
isolation hardware, such as the SN745244 [Uni78§|, between each of the memory
modules (b_oth local and shared) and the host bus to prevent a memory module
from failing in such a way as to make the host to memory module bus

unusable. The desele-tion and isolation hardware is controlled by the CU.

The effect of the bypass boxes is to allow the system to reconfigure

“‘around” a faulty unit. Consider, an N=8 EMuRSS system where PU 7 is

faulty.
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Physical: 0 1 2 3 4 5 6 7|8

In the single fault case, with the use of bypass boxes there are still eight usable

PUs. When a double fault occurs, such as any of those shown in Fig. 3.8.2.,
the number of usable PUs is seven, because the use of bypass boxes allows the
connectivity to be maintained. In a normal MuRSS, the number of usable PUs
would be 6, 5, 4, 4, 5, 6, 7, and 7 respectively. Multiple (more than two) faults

are handled similarly.

The two modes and corresponding effects of bypass boxes are shown in
Fig. 3.8.3. These modes allow MuRSS to completely bypass a faulty PU. When
there is a failure in a PU I the PU is bypassed and its associated shared
memory is deselected. It is assumed that the bypass box/deselection circuitry
can isolate any faulty hardware from the shared busses, allowing normal

communications to take place between the two processors adjacent to the

faulty PU.

The CU can re-assign the PU numbers, allowing the PUs and their
associated memories to be treated like they were contiguous. As was used

before, the PUs have a physical number and a logical number. The logical PU

number will not only simplify the addressing by the host, but will, when

combined with the ‘‘wrap-around” connection, allow the system to handle one

complete shared bus or bypass box failure with no degradation.

If a single PU fails, the bypass boxes associated with its shared busses are
set to bypass mode. The shared memory associated with its bus 0 is

deselected. Disabling the faulty PU has the effect of disabling its local

........................................
..................................
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memory, thus contention on the host bus is not a problem. The logical PU
number of all PUs whose physical PU numbers are greater than the faulty PU

is decremented by one, as is shown in the following example:

Physical: 0 1]2]/3 4 5 6 7 8

Logical: 01*|234567

Physical PU N (previously disabled) becomes logical PU N-1. When a memory

module (either local or shared) fails, it is handled exactly like a fault with the
associated PU. The wrap-around connection is not used when there is a fault
with a single PU or memory module. Multiple faulty PUs are handled
similarly, only in the multiple fault case, the performance is degraded as there
are no more working PUs to replace the faulty units. Multiple faulty shared

and local memory modules are handled like multiple faulty PUs.

A single faulty bypass box is handled using the wrap-around connection.
If there is a fault with one of the bypass boxes associated with PU I, PU I is
disabled. PUs with physical numbers I+1 to N are given logical numbers 0 to
N-I-1 and PUs with physical numbers 0 to I-1 are given logical numbers N-I
to N—1. Using the wrap-around connection places the faulty bypass box on the
logical end of the array, where it and its associated PU (PU I) are unused. If, in

addition to a single faulty bypass box, there are any faulty PUs or memory

modules, these additional faults can be handled as described in the last

paragraph. :E::l::‘ij




In general, multiple faulty bypass boxes break the connectivity of
EMuRSS. It is assumed that a bypass box failure does not pull down a shared
bus. If it does, it is treated the same as a shared bus failure. Multiple faulty
bypass boxes have the same result as multiple PU failures in MuRSS. Thus,
the number of usable PUs is less than N. The set of adjacent usable PUs may

or may not use the wrap around connection.

If the multiple faulty bypass boxes share the same bus, EMuRSS can
handle two faults with no degradation. This is shown in Fig. 3.8.4. This is the
same situation for a single faulty shared bus, i.e., the bus shared by PUs I-1
and I in Fig. 3.8.5. If the two faulty bypass boxes are connected to the same
PU, i.e., bus 0 and bus 2 of PU I, EMuRSS can handle two faults with no
degradation. This is shown in Fig. 3.8.6. If the faults are on contiguous
busses, e.g., PU I's 0 bus, PU I's 2 bus, and PU I-1's 2 bus, up to three faults
can be tolerated with no degradation in performance. This is shown in Fig.

3.8.7.

Multiple faulty busses break the connectivity of EMuRSS. This situation

is the same as the case for multiple faulty bypass boxes previously discussed.

Since mechanical connections, such as those between a chip and a bus, are
significantly more prone to failure than those within a chip, the number of
mechanical connections can give a fair indication of the probability of failure of
a unit. In MuRSS, both shared and local memory busses are connected to 28
64-Kbyte chips and each chip has 28 pins, so (including the 64 pins on the
68000) there are a minimum of 14400 mechanical chip connections that can
cause a fault within each PU and its associated memories (only those busses

associated with a PU are considered). This figure is clearly conservative
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Fig. 3.8.4 EMuRSS reconfiguration around
N two box faults on same shared bus
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Logical PU N-141 Disabled Logical PU O
PU PU PU
I-4 I I+1
Local Shared lLocal Shared Local
Memory Memory Memory Memory Memory
Module Module Mogule Module Module

1 0 s 8 2 &

Ta

{0 - Bypass box

Fig. 3.8.6 EMuRSS reconfiguration around two

bypass box faults associated with PU I

(controlled by CU)
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Logical PU N-1 Disabled Logical PU ©
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I-1 I I+14
Ol ‘ 5
Local Shared Local Shared Local
Memory vemcory Memory Mermory Memory
Module Moddle Module Module Module

O - Bypass box

Fig. 3.8.7 EMuRSS reconfiguration around three
adjacent bypass box faults

(controlled by CU)
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because a failure in any support hardware (e.g., the CU) will also cause a fault.
For simplicity, only chip connections (pins), as opposed to chip connections and
bus connections (e.g., connections from busses to boards), will be used for this

discussion. MuRSS (N=1024) has 14,745,600 mechanical chip connections.

The fault bypass circuitry in EMuRSS consists of the bypass box, the bus
L performing the bypass, and shared memory unit deselection hardware. Thus,
there are chip connections to the CU, PU, shared bus, shared memory,
bypass bus, and deselection circuitry that can fail. The connections in

bold print are to busses with 26 connections for address, 8 connections for data,

4 connections for signals, and 2 connections for power and ground. This
comprises 200 connections. The CU must have one line to control each bypass
box and one line to control the memory deselection circuitry. making 202
mechanical chip connections that can cause a fault. The processor/memory
hardware is 88 times more likely to fail due to a mechanical connection than
the bypass circuitry. EMuRSS has 14,952,488 mechanical connections. This
represents an increase in hardware complexity of 1.4 percent over the non-fault
tolerant MuRSS, which is a trivial change in the complexity of the system

when it is compared to the additional fault handling capability of the system.

The 1.4 percent figure does not accurately represent the fault tolerance of

the EMuRSS. A fault in any two of the 14,680,014 connections will yield up to 4

half the system unusable. Thus, these connections can be labeled as critical to ::‘;?:‘jff‘

the system’s operation. EMuRSS has 204,800 connections. This represents a

significant decrease in the number of critical connections.

To compare the performance of MuRSS to EMuRSS. consider the
following example. If UPWBB is the number of Usable PUs in an N+1 PU
MuRSS With Bypass Boxes, UPWBB = N - F + 1, where F is the number of

---------
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-
faults in the system (1<F<N+1). (If F=0, UPWBB=N,)
For F < N+1 faults, the number of Usable PUs in a system with No
- Bypass Boxes (UPNBB) would be no less than Tl The benefit of the
bypass units is demonstrated in Fig. 3.8.8, where UPWBB/UPNBB is graphed f“::?_
with respect to F. The ‘‘sawtooth’ nature of this graph stems from the floor “ﬁ:
function in the definition of UPNBB. At uo time is UPWBB less than UPNBB, 33‘;3}523_}5
but for an N=1024 PU system, UPWBB can be up to 512 times greater than i
UPNBB. ‘
Thus for a small increase in hardware complexity, the degradation in the . :
3 system performance due to multiple faults can be significantly reduced (by up ";
to a factor of 512 on a 1024 processor system). \\
3.9. MPP -- A Massively Parallel Processor :S_
For the basis of comparison, consider the Massively Parallel Processor \;
(MPP) as described in [Bat82] and [Bat80]. MPP is an SIMD machine which -
was designed to work efficiently on a variety of image processing tasks, such as 1
correlation and multispectral classification. Fig. 3.9.1 is a block diagram of :
MPP, which illustrates the four major sub-units. The ARray Unit (ARU) is
the unit that actually contains the Processing Elements (PEs), and is capable
of processing arrays of data at high speed. Each of the PEs in the ARU
T performs instructions broadeast by the Array Control Unit (ACU) on data
that are stored in local memory.
t Logically, the ARU consists of a 128-by-128 array of PEs. Physically, the

ARU contains an extra 128-by-4 array of PEs for fault tolerance. The size of

- Tt
T T TV TR SR e SR PICNEY|




119

WL CC ., TR

UPNBB l N J
5127

. 36847

2567

. '\';.-'<.

12e

LR AT - o7,
RAORRUUNT X

1 ] 1
256 812 768 1024
Faults

IR 4
[¥8
(%Y
.

=
AR S

v

e

-

:

v
B
' .
¥

Fig. 3.8.8 Ratio of usable PUs in EMuRSS
to usable PUs in MuRSS

TN e e L AL oo e e e e gl e e e N
N s ) FaEARS " L4 . A A P PSP AR Wl el
PP YRR T i T YR T DA U0 W W PV T e ) PO N T

» - ‘e PR - a " . . 0 - C— ..‘ '-.
AL G PP o G AT SR CVE L ST %, . v S




[
.
I
.
.
v
)
[
’
'
«
'
v
’
r
;
v
r
[4
0
s

v e s NNV e s
)
N
(=]

e N S .
L4
P
.

[ SLOLPLN

Staging
Memory

Array
Unit

. AN e eSS R L
<€
ll‘.'." DN . ‘. B l' i3 !

¥ (ARU)
; T
“. - _'.\ .
- > “—--\
K Program & Array f':.'-:.\

' Data Host

ntr
Mgmt . g m— Co ol ———>
unit unit Computer

(POMU) (ACU)

[T IR A

Fig. 3.9.1 Block diagram of MPP ({Bat80],(Bat82]) e

W~ hLA5HER ..
A '.-’ i ‘.' 2, c"v".‘ .. .'-. "1:'? -. .- N ' . 7

, 6. &

“




121

v s e e -
L

; the extra 128-by-4 array was determined by packaging constraints. The bit-

o . ——

serial nature of the PEs allows MPP to perform efficiently on operands of all e

lengths. The 16,384 PEs operate instructions on 16,384 bits at a time, which

allows for a very high processing speed. N

PR N L

Each PE in the 128-by-128 array communicates with its four nearest
neighbors in a fashion similar to ILLIAC IV ([Bar68] and [Bou72]). A topology
i register in the ACU allows the user to software select what happens to edge

data in the ARU. Top-bottom connections in the ARU are handled
independently from the left-right connections, allowing the user greater
i flexibility. There are four possible connections that a PE, call it PE; on the

right edge of the array can make in addition to connecting to PEjiminust,

PE| iminustosr and PEjg e, where @ and ciminus are modulo 16384 addition

.' and subtraction respectively. They are:

,. 1) open (no connection)

2) connect to PE[4(PE 333 has no connection)

l 3) connect to left edge PE of same row R
1) same as 2), but connect PE 441 to PE,

The connections for left edge PEs correspond to these connections. Top-bottom

connections are less complex thar iae left-right connections, in that the top

-

'! and bottom PEs of a given columu may be either conaected or left open. “~

'j Each PE in the ARU contains a full adder, a shift register, six 1-bit
registers, a programmable length shift register, 1K-bits of RAM, a data bus, .

i combinatorial logic, and a mask register. Fig. 3.9.2 shows the layout of the PE. O

100ns is the basic cyele time for the PE; however. routing operations are :_"_'.:jf:fj'.
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masked independently of arithmetic operations, so masked routing operations
may be combined with unmasked arithmetic operations. PEs perform the
instruction generated by the ACU on the data stored in their local array. Fig.
3.9.3 is a block diagram of the ACU. The three units comprising the ACU are
the I/O control unit (which manages the flow of data), the PE control unit
(which performs array arithmetic for the applications program), and the main
control unit (which performs scalar arithmetic for the applications program).

Operations of each of the units are overlapped to minimize execution time.

The Program and Data Management Unit (PDMU) controls the overall
flow of programs and data in the system (Fig. 3.9.1), and is comprised of a
DEC PDP-11. The staging memory are used for format conversion between the
incoming data and the data to be processed. Once the data has been processed,
it is returned to the staging memory, where additional formatting can be

performed.

Through its massive parallelism, high clock rate, and its functional
overlap, MPP is capable of performing 400 million 32-bit floating point
additions per second, 200 million 32-bit floating point multiplications per

second, or 3277 mullion 16-bit integer additions per second.

It is difficult to compare the cost of EMuRSS and MPP, since MPP is
constructed of specially designed VLSI chips and EMuRSS would not be. The
complexity of this comparison is compounded by tine fact that hardware costs
change so rapidly. Therefore, the comparison wiil be limited to the area of
processing speeds, fault tolerance, and capabilities of MPP and a 1021
processor EMuRSS. both of which process 16,384 bits at a time. The purpose

of this comparison is to highlight the differences in the two architectural

approaches.
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EMuRSS can perform 3072 million 16-bit integer additions per second and
MPP can perform 3277 million 16-bit integer additions per second. MPP is 6

DD

»
LN

percent faster than EMuRSS. EMuRSS can perform 307.2 million 16-bit
integer multiplications (yielding a 32-bit result) per second. MPP can perform
1861 million 8-bit integer multiplications (yielding a 16-bit result) per second
and 902 million 12-bit multiplications per second (yielding a 24-bit result). 32-

bit data was not available.

In terms of floating point operations per second, MPP outperforms the
EMuRSS without the floating point processor (both MuRSS and EMuRSS have
the same processing speeds). The cycle time for MPP is 100 nsec, while the
cycle time for EMuRSS is less than 80 nsec. (see Section 3.2), so it would be
intuitively pleasing if EMuRSS outperformed MPP. Both processors operate
N on 16.384 bits of information at a time; however, in all cases MPP will require
s the minimum number of cycles for a given operation for a given number of bits
- because of its bit serial nature. For example, a typical 32-bit floating point
i format consists of:

a sign bit for the mantissa,
an 8-bit 2's complement exponent, and
a 23-bit mantissa.
A 68000 can perform operations on 16-bits of information at a time, so
operations on the 23-bit mantissa rcquire the same uime as operations on a 32-
- bit mantissa. Operations on the 8-bit exponent require the same time as
operations on a 16-bit exponent. Further, the EMuRSS processors have to
strip out unwanted data at the end of each operation, whereas the MPP

processors have little or no unwanted data.
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The specialized floating point hardware eliminates much of the overhead
involved with the handling of unwanted data. This is why EMuRSS, when
equipped with the floating point processor, becomes very similar in performance
to MPP. For a 32-bit floating point addition, EMuRSS is 9 percent slower than
MPP, but for a 32-bit floating point multiplication, EMuRSS is over 56 percent
faster than MPP. Further, the EMuRSS specialized floating point processor has
hardware implementations for sine, cosine, and tangent, all of which must have
custom programs written for their calculations on MPP. Further, each floating
point processor is independent from the other floating point processors in

EMuRSS, i.e., they are not synchronized. Thus, no processor must be idled for

any point in time during these calculations to wait for another processor to
finish a calculation whose execution is data dependent, e.g., to perform a cosine
no synchronization is required during the intermediate computations. This
makes EMuRSS even more competitive with MPP because using the algorithms
in [Har68], there are conditional instructions that are required for the

calculation of the trigonometric functions.

To be_able to tolerate a single fault with no degradation in response time,
MPP uses an additional 4-by-128 array of PEs. A one PU EMuRSS equipped
with the bypass boxes discussed earlier requires one additional PU to be
capable of withstanding the fault of a single PU without loss of processing
speed. Both MPP and EMuRSS require some form of bypass hardware to
bypass a fault.

MPP and EMuRSS are tolerant to a single fault. MPP is not tolerant to
multiple faults, unless they are all in the same 4-by-128 array of PEs that is
bypassed. The number of usable PUs in EMuRSS is one more than N minus
the number of failed PUs (since an N-PU EMuRSS has one spare PU). Thus,
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in general, in the event of a multiple fault, EMuRSS can continue to be used
with a minimal degradation in performance. For MPP, there is no provision

for operation in a degraded mode when multiple faults occur.

Any of the inter-processor nearest neighbor communication operations that
MPP can perform can also be handled by EMuRSS. MPP can process images
by assigning one pixel to each PE, or by dividing the image to be processed

into square neighborhoods that are processed by the PEs. For an M-by-M

image, each PE would hold subimages that are M/128 pixels on a side. An

image to be processed by EMuRSS must be divided into stripes extending from

the top of the scene to the bottom. Any inter-row communications in MPP are
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Both EMuRSS and MPP have a memory organization that will allow an
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staging memory to perform image transformations and formatting for input T
e
and output. Because of the way the EMuRSS host accesses the memory, either T

row or column format data can be loaded.

Architecturally, EMuRSS and MPP differ in the processor-to-processor

connections. EMuRSS does not have a true interconnection network. Instead,

EMuRSS implements a network with shared memory banks. This technique %
et
allows memory to be used for both storage and communication, meaning that -_'_;'.3',;._-_::
NN
no special communication protocol is necessary. Data transfer is treated like a oo n

memory write.




In conclusion, MPP is faster than EMuRSS (with the floating point
hardware) on fixed point operations and some floating point operations.
EMuRSS compares reasonably with MPP on floating point multiplication and
division. EMuRSS has a hardware unit capable of performing floating point
trigonometric and inverse-trigonometric functions. Because the floating point
units are not run in lock-step, for any floating point operation, e.g., steps
during the calculation of cosine, EMuRSS effectively becomes an MIMD

machine, whereas MPP must perform these operations in lock-step.

Any processor-to-processor communication that is required for an MPP
implementation of an algorithm can be handled by EMuRSS. Both MPP and
EMuRSS can handle a single fault with no degradation in performance;
however, only the fault-tolerant EMuRSS can handle multiple faults (with

some degradation).

3.10. Conclusions

MuRSS, an SIMD architecture with as many as 1024 processors, was
presented. It was shown that N processors in the SIMD mode of operation
could perform various context independent (e.g., maximum likelihood
classification) and window based (e.g., smoothing, contextual classification, and
image correlation) image processing tasks almost N times faster than one
processor of the same type. The application of MuRSS to these tasks was

discussed.

Through the use of the EMuRSS SIMD architecture, computationally
demanding remote sensing processes can be implemented efficiently. This will

not only reduce the computation time required to perform remote sensing
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tasks, but will also allow the investigation of techniques which may otherwise
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be considered infeasible.
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Because of the architecture of MuRSS, multiple faults seriously degraded

its performance. The architecture of MuRSS was altered to increase MuRSS’
tolerance to faults, creating EMuRSS. EMuRSS was then compared to MPP in

the areas of performance, fault tolerance and capabilities.
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CHAPTER 4
MODELS FOR USE IN THE DESIGN OF
SPECIAL PURPOSE MACRO-PIPELINED
PARALLEL PROCESSORS

4.1. Introduction

For certain applications, such as speech processing, time is an important
factor. In such applications, there is a need to process many data sets in the
same way e.g., performing an FFT for every frame of input data. Previous
analysis, such as that performed in [Dem8&3, TuA83, YoS82, Vic79], shows that
for many types of tasks, a general purpose processor is not sufficient. In this
chapter, an approach is proposed for modeling off the shelf hardware and for
modeling parallel algorithms, along with a design methodology to use the
information provided by these models, to design a class of macro-pipelined
special purpose parallel architectures. The goal is to use models such as the

ones proposed here to develop computer aided design tools.

Special purpose processing systems (such as those used for dedicated real-
time analysis) are typically sold in small quantities. As a result, the cost of the
design can make the resulting system prohibitively expensive. Computer aided
design tools for this process would reduce the cost involved and are therefore

desirable.
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This chapter uses nine parameters to correlate the hardware to be
designed to the applications software to be executed and the I/O environment
in which the machine is to operate, i.e., what data rates the machine must
handle, the format of the incoming data, the format of the outgoing data, etc.
A macro-[;ipelined layered approach to task decomposition is demonstrated.
Each portion of the decomposed task in a scenario is then assigned to a
specifically designed special purpose processing unit. This implies that each
processing unit may either be a traditional serial type design or a parallel
design. Once this initial decomposition is established, techniques such as those
used to adjust the execution time and throughput of a pipeline in [HwB84] can

be applied.

In this approach to reaching the goal of automated computer design, a
functional descriptions (models) of the hardware components that may be used
in the design must be combined into a database. Included in such a database
is information about the cost, size, power consumption, and heat dissipation of
the device, an enumeration of all the operations that it can execute, the
pathwidth and execution times for those operations, the number and size of the
registers, and a simulation routine for the device. More complex taxonomies,
such as those found in [Han77], [Han81], [HoJ81], and [Gil83] are not needed for
the database because they specify architectural information. Here, only
information that affects the processing speed of the unit are considered. While
the architectural information provided by more complex taxonomies can yield

similar information, handling of the additional data is cumbersome.

The information in the database will be used to select the “best' hardware
to execute a given algorithm. As suggested in [Gon78|, it is desirable to

establish and order according to importance, the criteria used to rank designs.
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The criteria used here will be (in order of importance): speed and cost. Speed
refers to both response time and throughput. The response time is the time
between receiving the input and transmission of the corresponding result. The
throughput is the number of data sets processed per unit time. Other criteria

might include: space, power requirements, and cooling requirements.

Using information about each sub-task in a scenario, a specific hardware
organization can be arranged to execute the required algorithm when possible.
Consider a task that is composed of several sub-tasks. An example of such a
task might be isolated word recognition [YoS82]. For isolated word recognition,
a typical processing scenario might be: digital filtering, autocorrelation analysis,
linear predictive coding (LPC) analysis, linear time warping, and dynamic time
warping. Each of these processes (sub-tasks) represents a portion of the
scenario. An example of the scenario is in Fig. 4.1.1. Each of the sub-tasks
will be called a layer. Using information about each sub-task, a special-
purpose architecture can be developed to execute the sub-task within some
time and cost constraints. The special-purpose hardware that is assigned to

each layer will be called a level.

For the present, only a simple scenario (one in which there is no feedback)
is considered. Initially, the sub-tasks will be chosen according to conceptual
differences, i.e., digital filtering is different from autocorrelation analysis, so
each should be a different layer. It is assumed that in general, conceptually
different portions of the task, i.e., the sub-tasks, require different hardware
resources. A more complete discussion of the application of such a design to an

isolated word recognition system may be found in Section 4.6.

It is the goal of this scheme to achieve a higher throughput by

decomposing a scenario into layers. Because each layer requires fewer
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computations than the entire scenario, connecting the levels in a macro-pipeline
and pipelining the data sets through the machine should increase the
throughput of the resulting system. This type of parallelism is referred to as
vertical parallelism. Since each layer is executing on specially designed

hardware, which may consist of multiple computational units, the response

VRS 2 T S G, LY e,
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time of the resulting system is decreased. The parallelism occurring within a

c w »

given level, where multiple units are performing operations on different portions
i of the data set simultaneously, is referred to as horizontal parallelism.

Vertical and horizontal parallelism are similar to the techniques of subdivision
: and replication discussed for pipelines in [HwB84] or the ‘‘purely pipelined” and
the ‘“‘purely parallel” architectures discussed in [WoC84]. Throughput
constraints may require that a layer be further divided into smaller processes.
These will not represent new layers, but sub-layers, which will correspond to

i sub-levels of hardware, consistent with the previous nomenclature.

It is possible to sub-divide the layers to the point where each sub-level
performs exactly one instruction. The result would be a special purpose,
! dedicated, instruction-level, data flow machine, capable of performing only a
single task. A minor alteration in the program would require an alteration in

the hardware. For all but the least complex scenarios, the hardware cost

would be overwhelming. Analogously, layers can be combined to the point
- where one level performs an entire task. This is the case with a traditional
. serial machine. Presumably, the throughput of such a machine would be too
i
3 small. !
b By developing a method to transform a task description into a potential e
i macro-pipelined architecture, a machine can be built with the necessary A
characteristics to execute the task quickly and without excessive amounts of DBERG
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hardware. A basis for such a method is examined in Section 4.5. A similar goal
can be found in [WoC84|, where the goal is that of an automated tool for
planning and integrating signal processing systems in a distributed computing
environment. [WoC84] examines the performance of a system to satisfy
requirements for throughput and robustness with respect to hardware
allocation strategies, i.e., how can processors be added or deleted from a system
to optimize performance. A valuable result from the work in [WoC84] is the
detailed analysis of the resulting system. These techniques can also be applied
to load balancing between processors. The type of systems that are considered
in [WoC84] are either purely parallel (SIMD or MIMD) [Fly66], or purely
pipelined. A purely parallel system corresponds to the parallelism within a level
(horizontal parallelism), while a purely pipelined system corresponds to the
level to level and sub-level to sub-level relationships (vertical parallelism).
Thus, this research is a useful tool in the analysis of both the macro (level to
level) and the micro (within a level) characteristics of the system. Here, the
major concern is the underlying concepts behind a model relating specific
algorithms to the requirements they place on hardware. The research here
expands on the work in [WoC84] by allowing both forms of parallelism at any

level.

The analysis categories in [WoC84] can be applied to any given level that
contains one or more combinations of these parallel types. This will allow each
level to be designed for a specific sub-task, having a special hardware
complement to more quickly execute that sub-task, resulting in a machine that
can complete a processing scenario within some time constraint. For the case
to be discussed in Sections 4.6 and 4.7, the time constraint will be that the

proposed system must understand isolated words in real-time.
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It is the goal of this chapter to introduce methods of modeling hardware
and algorithms so that an accurate estimation of the execution time of an
algorithm is possible. The proposed hardware database is discussed in Section
4.2. Response time and its relation to the system hardware is considered in
Section 4.3. Section 4.4 will discuss the two types of parallelism and their
affect on the overall performance of the system. Section 4.5 will present nine
parameters and discuss their relationship to the hardware of the corresponding
level. In addition, the parameters are related to the application software of the
corresponding layer. By applying both of these relationships, the software can
be related to the hardware. This is done in Sections 4.6, 4.7, and 4.8, where
the concepts discussed in Sections 4.2 through 4.5 are applied to an isolated

word recognition system.

4.2. The Hardware Database

A processor description in the database consists of an 9-tuple, a 6-tuple,
and a set of three N-tuples and three N+ 1-tuples, where N is the number of
assembly language instructions (the ‘“+1" includes the instruction fetch unit,
which can, on some systems, overlap execution with certain instructions). The
9-tuple consists of the processor name, cost, package size, thermal dissipation
requirements, power requirements. clock speed, data pathwidth, address
pathwidth, and virtual address space. The package size. thermal dissipation.
and power requirements, are included for applications, such as those aboard a
satellite, where information about all three categories may be crucial. For
some processors, such as the PDP-11/70, the virtual address space and the real

address space differ, so both are required for specification of the processor.
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The 6-tuple consists of the size and speed of on-board cache, the size and
speed of on-board memory, and the number and size of the registers. The N-
and N+1- tuples must provide information about: the type of machine
instructions, the execution time for a single operation for each instruction, the
number of stages in any pipelines, the replication of units, and the overlap of
operations. The tuples corresponding to the last three information categories
are N+1-tuples to account for any pipelining, functional overlap, and
parallelism that can occur within the instruction fetch unit. By combining the
information contained in the various tuples, it is possible to derive a precise
estimation of the execution time of all operations whose times are constant,
(e.g., floating point operations on units like the AMD9511A, require variable
amounts of time to execute the same operation on different arguments, thus
only an estimation or expected processing time may be derivable). By
combining information in different tuples, much information can be gained.
For a simple example, by combining the number of stages in a pipelined unit
with the single operation execution time of the unit, it is possible to determine

the throughput of the unit.

Because different processors have different instruction sets, it is logical that
N not be the same for all processors. Consider the case of a simple processor
with an instruction set consisting of an &-bit add, a 16-bit add, a return on
zero, 2 move memory to register (&bit), and a move register to memory (8-bit).
The 9-tuple would look like:

(BRAND/MODEL .$5.00,1.5¢m-by-3.0cm,1.5-BTU /hr,
0.15-W . 1.3-mu—sec,8-bits. 16-bits.16-bits)

Each element of the above tuple corresponds to the above enumeration of the

elements of the 9-tuple. For a simple processor, like the 8085, the 6-tuple

................................
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would be:

(0,0,0,0,(1 &bit, 3 16-bit(8-bit)))

The four “0’s” show that there is no on-board cache or memory, while the
parenthesized quantity associated with the 16-bit register width shows that the
three 16-bit registers can be addressed in &-bit units. For a processor that is
capable of performing the above instructions (which are a small subset of the
instruction set of the 8085), the 5-tuple describing the capabilities would look
like:

(8-bit add register to register,

16-bit add register to register,

return if zero,

8-bit move memory to register,
8-bit move register to memory)

Both the source and destination of each operation must be enumerated. This
allows for processors (like the 8085) in which the results of a given operation
must go to a specific place (the accumulator). The information in the i'h
element in each of the following tuples corresponds to the i'® element of the
tuple enumerating the instruction set of the processors. There should be some
closed form of notation for this section, for example: 1addXX could be used to
represent an integer addition that is XX bits wide. Such a notation would allow
the same assembly code to be used on various machines supporting similar
operations,’ this would replace the requirement of knowing the assembly

language for each unit in the data base, with knowing one generic assembly

language.
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The 5-tuple describing single operation execution time of the operations is R
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as follows (all times are in processor cycles):

(5,10,(5/11),7,7)
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This 5-tuple describes the information about the time to execute each of the

above operations. By describing all the operations of the processor in basic
clock cycles, the description of improved versions of a processor can be easily
added to the database. For this example, the “return if zero’ (third element
above